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Abstract

In the modern era, cardiologists managing patients and families with cardiomyopathies need to be familiar with every stage of the diagnostic pathway 
from clinical phenotyping to the prescription and interpretation of genetic tests. This clinical consensus statement from the ESC Council for 
Cardiovascular Genomics aims to promote the integration of genetic testing into routine cardiac care of patients with cardiomyopathies, as recom-
mended in the 2023 ESC guidelines for cardiomyopathies. The document describes the types of genetic tests currently available and provides advice 
on their prescription and for counselling after the return of genetic findings, including the approach in patients and families with variants of unknown 
significance.
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The role of the cardiologist in genetic testing for cardiomyopathies. The figure summarizes the key roles of clinical cardiologists in the genetic work- 
up of cardiomyopathies.

Keywords Cardiomyopathies • genetic testing

Introduction
In a recent position statement, the ESC Council on Cardiovascular 
Genomics outlined the critical importance of clinical and family data in 
the interpretation of genetic variants using cardiomyopathies as a refer-
ence.1 In this second statement, we highlight the emerging and vital role 
of cardiovascular specialists in the coordination of the entire genetic test-
ing pathway, again using cardiomyopathies as a model. Our view is that 
cardiologists requesting and returning genetic test results to patients 
and families should have a working background knowledge of the re-
quired tests, including their diagnostic yield, the limitations of analytical 
tools and bioinformatics pipelines, and the technical reasons for possible 
discrepancies between expected and observed results. These skills are vi-
tal to prevent inappropriate use of genetic testing and misinterpretation 
of genetic variants.

The role of the cardiologist in 
genetic counselling
Cardiologists involved in the care of patients and families with cardio-
myopathies should, as a matter of routine, systematically collect data 
on family history and record detailed clinical phenotypes. This informa-
tion is necessary to support pre-test hypotheses and the indications for 

genetic testing as well as the selection of testing strategies. The possi-
bility of a genetic origin of cardiomyopathy and the reasons for offering 
a genetic test should be communicated to patients together with the 
implications for their relatives should the test be positive. Current 
best practice is that individuals should provide informed and documen-
ted consent for a genetic test. After completion of genetic testing, car-
diologists working alone or in partnership with other appropriately 
trained care providers (e.g. geneticists, genetic counsellors) are re-
quired to return the results and to explain their clinical actionability 
and consequences.1

The role of the cardiologist in 
genetic testing
The preferred approach to genetic counselling and testing for cardio-
myopathies is described in the 2023 ESC guidelines for the manage-
ment of cardiomyopathies.2 While many cardiomyopathies are 
genetic diseases, their diagnosis still rests on morphological and func-
tional criteria that are used to define different clinical subtypes.3,4 A 
diagnosis of familial or genetic disease can often be inferred by the 
presence of affected relatives and/or phenotypical traits consistent 
with a genetic origin.5 Genetic testing follows the clinical evaluation,1,6

and any identified genetic variants are then classified according to 
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internationally accepted criteria as pathogenic (P) or likely pathogenic 
(LP), variants of uncertain significance (VUS), and likely benign (LB) or 
benign (B) variants,7 taking into account continuous gene-specific re-
finements in designation.8

Cardiovascular specialists play a role at every stage of the genetic 
pathway: specifically, phenotyping of patients and relatives;5 decisions 
on whether genetic testing should be initiated;6 prescription of the ap-
propriate genetic test;9 interpretation of genetic variants;1 return of re-
sults to patients; and the tailoring of family screening and management 
(Graphical Abstract). Increasingly, at least some cardiologists will also 
have to participate in decisions about functional analysis of rare VUS 
using, for example, RNA and protein studies, particularly when there 
is clear evidence of familial disease. Cardiologists should also be pre-
pared to manage secondary genetic findings, the analysis and reporting 
of which are recommended by the American College of Medical 
Genetics (ACMG) and Association for Molecular Pathology 
(AMP).10–13 Finally, in syndromic diseases causing cardiomyopathy, clin-
icians should be aware of other non-cardiac manifestations so that ap-
propriate multidisciplinary assessment can be arranged. The complexity 
of this whole process makes it highly desirable that genetic evaluation is 
co-ordinated by specialists and teams with the necessary experience in 
genetic disease. The essentials of effective genetic testing are summar-
ized in Supplementary data online, Figure S1.

Genetic testing: methods
A ‘diagnostic’ genetic test for cardiomyopathies analyses all validated 
disease genes and aims to detect disease-related genetic causes. A nega-
tive result occurs when there is truly no monogenetic explanation for 
the disease but can also be explained by limitations of the test type or 
design (Tables 1 and 2).14–17

Single-gene testing is performed using either conventional sequencing 
covering exons and exon–intron boundaries, or whole single-gene 
(exons and whole introns) sequencing. The latter may be appropriate 
when tested genes have a high prevalence of pathogenic deep intronic 
variants (e.g. MYBPC3)18,19 in hypertrophic cardiomyopathy (HCM).

Single-gene testing is commonly used for confirmation of genetic 
variants detected using next-generation sequencing, but, even in the 
modern era, it still has some value as a fast and low-cost test in the 
evaluation of cardiomyopathies where the pre-test probability of a un-
ique genetic diagnosis is strongly supported by distinct clinical, imaging, 
and pathology features.20 Examples include rare syndromes such 
as Danon disease21 as well as more common diseases like 
Transthyretin amyloidosis.22 In other scenarios, single-gene testing 
may be confirmatory following the detection of biochemical or tissue 
disease signatures. Specific examples include Fabry disease, haemo-
chromatosis, and familial amyloidosis.23,24 Definite or suspected 
X-linked inheritance in males with dilated cardiomyopathy (DCM) 
phenotypes associated with evidence for skeletal muscle involvement 
(including isolated increases in creatine kinase) should prompt consid-
eration of genetic testing of genes like dystrophin (DMD); up to 80% of 
patients with dystrophinopathies carry single or multi-exon deletions 
(70%) or duplications (10%) that are routinely detected using first-line 
multiplex ligation-dependent probe amplification.25–27

Clinically similar but genetically heterogeneous cardiomyopathies are 
easily tested with phenotype-directed multigene panels and are the cur-
rent first-line genetic testing for cardiomyopathies. Although the design 
of multigene panels may vary from a few tens to hundreds of genes,28 it 
is important to highlight that increasing the number of genes tested in a 

panel has only a small effect on the yield of testing29 at the expense of 
generating a greater number of VUS.30,31,32 Commercial or customized 
clinical gene panels should always include validated genes associated 
with cardiomyopathies and should be expanded when new disease 
genes are discovered and confirmed.33 Although evidence of familial 
disease is not an absolute criterion for genetic testing, the diagnostic 
yield is higher in familial disease than in singleton cases. Different scores 
have been proposed to identify patients with higher probabilities of a 
positive genetic testing result.34–37 However, as yet, these do not sub-
stantially influence the decision to perform a genetic test in most 
settings.

Whatever the design of a diagnostic multigene panel for cardiomyop-
athies, it must include HCM, DCM, and arrhythmogenic right ventricu-
lar cardiomyopathy genes classified as definitive, strong, and moderate 
by ClinGen (the NIH-funded resource dedicated to building a central 
resource that defines the clinical relevance of genes and variants for 
use in precision medicine and research, https://clinicalgenome.org/).28

This minimum criterion assures diagnostic utility and enables uniform 
implementation of multicentre registries, surveys, and gene-based clin-
ical trials. Restrictive cardiomyopathy (RCM) remains problematic as 
RCM genes are not yet curated in ClinGen and because so-called 
restrictive ventricular physiology—the key diagnostic marker—is 
common in different morphological subtypes.

Whole-exome sequencing (WES) analyses the coding and adjacent 
intronic regions across the genome (1%–2% of the genome) that con-
tain most defects associated with Mendelian diseases (>85%). The at-
traction of this approach is that all genes known to be disease-related 
can be tested. It also provides potentially useful information on novel 
candidate genes and thus represents an investment for future auto-
mated re-analysis that takes into account new information on VUS 
and genes of uncertain significance.38 Nevertheless, WES is not the cur-
rent first-line test for cardiomyopathies (Table 1) as most data suggest 
that the diagnostic yield of WES in adult patients with cardiomyopathy 
is similar to multigene panels.39 This situation may be different in paedi-
atric patients, where WES appears to have a higher diagnostic yield 
compared with multigene panels.40 Other limitations of whole-exome 
testing include the need to manage secondary findings,10,11 the identifi-
cation of many more VUS of dubious clinical relevance,12 and the lack of 
detection of copy number variations (CNV) in routine interpretation.

Whole-genome sequencing (WGS) provides the sequence of all coding, 
non-coding, and intergenic regions of the genome,41 offering coverage 
uniformity and the possibility of detecting deep intronic variants and 
CNV or other structural variants. As with WES, WGS enables future 
re-analysis to incorporate advances in knowledge.42 In a recent WGS 
study including 209 children with cardiomyopathy, 39% of cases har-
boured pathogenic coding variants in known cardiomyopathy genes, 
and 5% had high-risk loss-of-function variants in additional candidate car-
diomyopathy genes.43 In familial DCM, a first-line WGS test has demon-
strated high variant detection, accuracy, and capacity to identify structural 
variants, but the incremental yield of clinically actionable variants was lim-
ited by the paucity of functional evidence for DCM association.44 As with 
WES, the drawbacks of WGS include secondary findings as well as VUS 
with a low probability of clinical actionability and the need for functional 
tests proving the effects of variants on the mutated protein.

Genotype–phenotype discordance
An increasingly common concern for the clinician is genotype–pheno-
type discordance45 (i.e. an identified genetic variant is associated with a 
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Table 2 Factors that may contribute to negative/inconclusive results of next-generation sequencing-based genetic tests

Incomplete 
gene list

Type of variant Technical 
sequencing 

issuesa

Interpretationb

Deep 
intronic

Large deletions or 
duplications

Large insertions, 
translocations, and 

inversions

Multigene panel Xc X X X X X

Clinical exome Xc X X X X X

Whole exome X X X X X

Whole genome Xd X X

Negative test results in patients with high pre-test probability can be explained by incomplete testing, acquired phenocopies, or variable coverage of specific genetic regions, typically deep 
intronic variants in WES, or technical sequencing issues (all tests). Misinterpretation of genetic variants may affect results of all tests.
aTargets with low sequencing quality or difficult to analyse.
bInterpretation issues include possible multigene defects effect.
cThe multigene panel and clinical exome may not include all genes either provisionally associated with CMP or genes still unknown as disease genes.
dWGS detects large insertions, translocations, and inversion with limited accuracy usually identified using other methods such as array-Comparative Genomic Hybridization.

Figure 1 Example of family genotype–phenotype discordance and incomplete tests. The figure shows an example of non-segregation of a pathogenic 
variant in affected members of the family and the development over time of the phenotype in a young relative who does not carry the proband’s patho-
genic variant. Expanded family screening identifies two affected unrelated relatives and a second pathogenic variant in a different gene. The pedigree 
summarizes both genotype–phenotype discordance (II:1 and II:2) as well as incomplete genotyping in the same family (III:3). The genetic cause of the 
dilated cardiomyopathy in the young patient III:3 was identified after the acute onset of dilated cardiomyopathy in the father, who was first diagnosed 
with post-COVID acute heart failure, and then recognized to be affected by BAG-related cardiomyopathy. Complete clinical evaluation and genetic 
re-analysis are needed before closing the genetic diagnostic path. VUS, variant of uncertain significant; LP, likely pathogenic; Cis, a pair of variants 
that occurs in same copy of the gene; Yrs, years; +, positive for the variant, carrier; −, negative for the variant, non-carrier; LVEF, left ventricular ejection 
fraction; LVEDD, left ventricular end-diastolic diameter; LV, left ventricular; EMB, endomyocardial biopsy; SD, sudden death; ACEI, ACE inhibitors; 
BB, beta blockers
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disease phenotype different from that of the patient),46 or the discovery 
of genetic variants that are predicted to be pathogenic on the basis of 
in silico and population data, but which do not segregate with the 
phenotype in families. Some examples of discordant and non-clinically 
actionable results are shown in Figures 1 and 2. These examples contrast 
the resolution of clinical discrepancies with family screening and pro-
spective monitoring of relatives (Figure 1) with unresolved scenarios 
(Figure 2). Our key message is that clinical decision-making begins and 
ends with the clinical phenotype (in probands and relatives). Detection 
of a pathogenic gene variant confirms the clinical diagnosis and provides 
additional potentially actionable prognostic information that can have 
significant therapeutic consequences. Genetic testing can be harmful 
when discrepancies between phenotype and genotype are ignored or 
overlooked.

Interpretation of variant 
pathogenicity and role of 
bioinformatics
The ACMG/AMP classification provides a standardized approach for 
the interpretation of gene variants and has been refined by various in-
itiatives (e.g. the US ClinGen Sequence Variant Interpretation Working 
Group).47 However, contemporary bioinformatics tools that imple-
ment ACMG criteria for variant interpretation in the absence of clinical 
data rely on a priori criteria derived from population data, clinical genetic 

databases, and in silico prediction tools. Validated functional tests and 
family segregation data are often absent. When variant pathogenicity 
is assigned in this way, individual bioinformatics tools for variant inter-
pretation can return different results for the same variant depending on 
the algorithms used by each software package (Supplementary data 
online, Table S1).

Interpretation of VUS and use of 
functional testing
Variants of unknown significance are rare (or unique) variants that 
do not fulfil a priori interpretation criteria for either B/LB or P/LP class 
or have conflicting ACMG classifications. The Association for Clinical 
Genomic Science Best Practice Guidelines for Variant Classification in 
Rare Disease 2020 currently rank VUS into six subclasses based on 
an estimated probability of their pathogenicity (Figure 3).48 In this con-
text, testing of a ‘hot’ VUS in a family may be justified when co- 
segregation of an appropriate phenotype adds the key contributor to 
the interpretation of pathogenicity. For most cardiomyopathies, the 
clinical risk of overestimating the significance of a VUS is less than 
that of underestimating a LP/P variant; this is in contrast, for example, 
to the consequences of overestimating a VUS in genes such as 
BRCA1/2 where the attribution of pathogenicity can lead to prophylac-
tic breast and ovarian surgery.

Our key message is that, whenever possible, interpretation of VUS 
should go beyond computational and predetermined statistical 

Figure 2 Example of genotype–phenotype discordance: appropriate testing? Genotype–phenotype discordance arises for different reasons: clinical 
and genetic screening may reveal the presence of multiple variants including variants of unknown significance and likely pathogenic–pathogenic variants; 
comorbidities can also confound interpretation of phenotypes. In the family shown in this figure, the proband underwent genetic testing following the 
clinical diagnosis of hypertrophic cardiomyopathy. The test provided inconclusive results for the phenotype because the identified likely pathogenic 
variant in PKP2 gene is not associated with hypertrophic cardiomyopathy. The segregation study in the family was limited to clinical screening. 
Genetic testing was of limited utility. For instance, none of the four siblings have children. Yrs, years; AMI, acute myocardial infarction; HCV, hepatitis 
C virus; SD, sudden death; VUS, variant of uncertain significant; 2DTTE, two-dimensional transthoracic echocardiography; CMR, cardiac magnetic res-
onance; LGE, late gadolinium enhancement; GB3, globotriaosylceramide
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approaches by employing genotype–phenotype correlation studies, seg-
regation in families, and, when feasible, pathological and functional 
studies.1

Functional assessment test in vivo
In circumstances where the interpretation of VUS has consequences for 
the management of patients and families, a functional assessment may be 
necessary. In other disciplines, most notably neurology, this often 

involves analyses of tissue samples, but this is less frequently considered 
in cardiology practice. In the future, it is possible that myocardial tissue 
analysis, including endomyocardial biopsies or opportunistically gathered 
tissue samples, will serve a similar purpose.

RNA-based tests
In addition to the enormous knowledge that transcriptomic tests pro-
vide in the understanding of the pathology of genetic defects associated 

Figure 3 Variants of unknown significance subclasses. (A) The graph shows the pathogenicity classes (from variants of unknown significance to patho-
genic) according to the scoring system and pathogenicity probabilities calculated using the Bayesian model of the American College of Medical Genetics 
guidelines. The threshold of six points, corresponding to the 90% probability of pathogenicity, is the minimum score to classify a variant as likely patho-
genic. The subclasses of variants of unknown significance are represented according to the Association for Clinical Genomic Science model where the 
‘temperature’ is proportional to the pathogenicity score. The dotted rectangle shows the hot variants of unknown significance and the warm variants of 
unknown significance which should always be taken into consideration for further impact assessment studies. (B) The table shows the subclasses of 
variants of unknown significance according to the Association for Clinical Genomic Science model, the points needed to reach the threshold of the 
likely pathogenic class, and the combinations of equivalent criteria. (C ) After becoming familiar with the system, the cardiologist can verify the assign-
ment of scores that define hot and warm variants of unknown significance, and consider carriers deserving of clinical attention in a similar way as carriers 
of likely pathogenic variants. The PP5 criterion can be critically revised by cardiologists who are now aware that many genetic variants classified as patho-
genic in the past early descriptions are now being reclassified. VUS, variant of uncertain significance; LP, likely pathogenic; P, pathogenic
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with cardiomyopathies (beyond the scope of this document),49 RNA 
sequencing or quantitative RT-PCR targeting single genes can aid the 
interpretation of variant pathogenicity. For example, RNA sequencing 
can demonstrate the damaging effect of classes of genetic defects 
such as synonymous variants introducing or abolishing splice sites, var-
iants affecting regulatory regions (3′ UTR and 5′ UTR variants), and var-
iants in non-canonical splice sites near exon–intron junctions or in deep 
intronic regions.50–53 According to the official nomenclature of genetic 
variants, canonical splice sites at the intron–exon junction have GT at 
the donor site and AG at the acceptor site (±1/2 intronic nucleotide 
positions). Non-canonical splice sites include all splice variants that af-
fect non-GT donor and non-AC acceptor sites.54 Cardiologists should 
be aware that genetic reports describing non-canonical splice defects 
predicted by DNA-based testing require further confirmation.

RNA-based tests are essential to genetic diagnosis when DNA-based 
tests do not provide conclusive results, the target gene is consistent 
with the phenotype, and the observed VUS deserves further investiga-
tion for correct interpretation. Although many computational tools 
predict splice-modifying variants, the in silico results cannot be consid-
ered conclusive, and variant effects should ideally be tested with RNA 
sequencing and confirmed with studies examining the expression of the 
mutated protein. When in silico tools predict a splicing alteration effect 
of a VUS and the phenotype in probands and relatives is consistent with 
the presence of defects in the given gene, RNA studies can validate the 
pathogenicity, especially in the absence of pathogenic variants in other 
disease-related genes.

Simple examples are represented by rare synonymous variants in the 
LMNA gene, introducing either novel cryptic splice sites (e.g. c.768G>A, 
p.Val256Val), or abolishing canonical splice sites (e.g. c.513G>A, 
p.Lys171Lys)52,53 (Supplementary data online, Figure S2) or by intronic 
variants computationally predicted as VUS but actually affecting splicing, 
such as the c.2905+5G>T in the MYBPC3 gene that causes the loss of 
a donor site with a damaging effect on the protein.53 Recent studies 
have shown that deep intronic variants with splicing effects are more 
common in MYBPC3 causing HCM than in BAG3-, DSP-, FLNC-, and 

LMNA-related DCM: in the latter genes, analysis of entire intronic se-
quences would not significantly improve the efficiency of molecular 
diagnosis of DCM probands.53,55,56

For genes such as GLA where the pathogenicity and type of var-
iants are essential for therapeutic decisions (e.g. enzyme replacement 
therapy or chaperone treatment), RNA-based tests such as in vitro 
mini-gene splicing assays may substantially contribute to establishing 
the pathogenicity of uncertain non-canonical and deep intronic 
variants.57

Although a precise estimate of the clinical need of RNA testing is dif-
ficult to provide, numerous cardiomyopathy genes show VUS the inter-
pretation of which may depend upon RNA testing. This need is set to 
increase given that, even with comprehensive genetic testing such as 
exome sequencing, about 50% of patients with suspected Mendelian 
conditions remain undiagnosed.58

Protein-based tests
Immediately downstream of RNA-based tests, tissue studies that ex-
plore the expression of mutated and non-mutated proteins can be 
very helpful in the diagnosis of genetic diseases. Contemporary meth-
ods include multi-tool protein expression using western blotting, im-
munohistochemistry with light, electron, and laser scanning confocal 
microscopy, and protein mass spectrometry, the latter being increas-
ingly implemented, for example, in amyloidogenic protein characteriza-
tion.59 Close dialogue is required between clinical and laboratory teams 
to decide whether information beyond DNA testing is required to 
achieve a precise diagnosis (Figure 4).

For several reasons (time, cost, complexity, technologies, and ex-
pertise), protein-based studies are rarely used in routine clinical prac-
tice. Nevertheless, recent studies, mostly of single cases and small 
series, demonstrate that tissue tests addressing the effects of the 
DNA variant on the defective cellular structure or function provide 
confirmation of pathogenicity and contribute to a greater understand-
ing of the basic molecular mechanisms of disease.

Figure 4 Diagnostic platform for cardiomyopathies. The figure summarizes the portfolio of tests and studies that can aid genetic interpretation. 
ECG, electrocardiogram; qRT-PCR, quantitative real-time polymerase chain reaction
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Conclusions
Although cardiologists are not traditionally involved in laboratory activ-
ities, the governance and application of genetic testing remains their clin-
ical responsibility. To fully exploit the possibilities of genomic medicine in 
cardiological practice, clinicians need to be active participants in the path-
way from clinical assessment to laboratory analysis. The development of 
a new genetic literate workforce is a key priority for the ESC Council.

Supplementary Data
Supplementary data are available at European Heart Journal online.
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