Therapy for Stage IV Non–Small Cell Lung Cancer With Driver Alterations: ASCO Living Guideline, Version 2024.2

Lyudmila Bazhenova, MD¹ (b); Nofisat Ismaila, MD² (b); Fawzi Abu Rous, MD³ (b); Krishna Alluri, MD⁴ (b); Janet Freeman-Daily, MS, Engr⁵ (b); Balazs Halmos, MD⁶ (b); Narinder Malhotra, MD⁷; Kristen A. Marrone, MD⁸; Sonam Puri, MD⁹ (b); Angel Qin, MD¹⁰ (b); and Natasha B. Leighl, MD¹¹ (b)

DOI https://doi.org/10.1200/JCO-24-02133

ABSTRACT

Living guidelines are developed for selected topic areas with rapidly evolving evidence that drives frequent change in recommended clinical practice. Living guidelines are updated on a regular schedule by a standing expert panel that systematically reviews the health literature on a continuous basis, as described in the ASCO Guidelines Methodology Manual. ASCO Living Guidelines follow the ASCO Conflict of Interest Policy Implementation for Clinical Practice Guidelines. Living Guidelines and updates are not intended to substitute for independent professional judgment of the treating clinician and do not account for individual variation among patients. See the Appendix for disclaimers and other important information (Appendix 1 and Appendix 2, online only). Updates are published regularly and can be found at https://ascopubs.org/nsclc-da-living-guideline.

ACCOMPANYING CONTENT

■ Articles, April 10, 2024 issue on p. e1 and July 10, 2024 issue on p. e44

🤣 Appendix

🔀 Data Supplement

Accepted October 4, 2024 Published November 12, 2024

Evidence-Based Medicine Committee approval: September 17, 2024

J Clin Oncol 00:1-4 © 2024 by American Society of Clinical Oncology

View Online Article

BACKGROUND

In 2022, ASCO launched living clinical practice guidelines for systemic therapy for patients with stage IV non–small cell lung cancer (NSCLC) with¹ and without² driver alterations and both have been updated recently.³⁻¹² Based on routine literature searches (up to August 22, 2024), this version of the stage IV NSCLC with driver alterations living guideline reviews new evidence to assess if recommendations are up to date.

Refer to Appendix Table A2 for the full list of recommendations and Appendix Figure A1 for the updated algorithm. The ASCO Guidelines Methodology Manual (available at www.asco.org/ guideline-methodology) and Supplement provide additional information.

RESULTS

The guideline Expert Panel (Appendix Table A1, online only) reviewed new evidence from four studies¹³⁻¹⁶ that met the systematic review inclusion criteria (Appendix Tables A3-A6),

and reviewed and approved the updated recommendations. Evidence supporting unchanged recommendations is reviewed in previous publications of this guideline.³⁻⁶

The committee is aware of and supports the recent US Food and Drug Administration approval of repotrectinib for patients with advanced neurotrophic tyrosine receptor kinase fusion-positive lung cancer and will update the recommendation when the peer-reviewed publication is available.

UPDATED RECOMMENDATIONS

EGFR Exon 19 Deletion, Exon 21 L858R Substitution

First-Line Treatment Options Update

Recommendation 1.1. Clinicians should offer osimertinib (Evidence quality: Moderate; Strength of recommendation: Strong).

Recommendation 1.1.1. Clinicians may offer osimertinib with platinum doublet chemotherapy or amivantamab plus

lazertinib (Evidence quality: Moderate; Strength of recommendation: Weak).

Qualifying Statement: Although Recommendation 1.1 addresses many patients in the target population, the guideline manuscript presents additional options that may be reasonable, based on the evidence reviewed. In addition, use of osimertinib in patients previously treated with adjuvant tyrosine kinase inhibitors is not reflected in this guideline.

The data supporting Recommendation 1.1.1 are derived from the phase III FLAURA 2 and MARIPOSA14 trials. A detailed description of FLAURA 217 is available for review in the prior version of this guideline.¹² In the phase III MARIPOSA trial, patients with untreated advanced NSCLC harboring classical EGFR mutations were randomly assigned 2:2:1 to receive amivantamab plus lazertinib, osimertinib, or lazertinib alone. The primary endpoint was progression-free survival (PFS) with amivantamab plus lazertinib (n = 429) compared to osimertinib (n = 429). Median PFS was longer with amivantamab plus lazertinib versus osimertinib (23.7 v 16.6 months; hazard ratio [HR], 0.70; P < .001), albeit with higher toxicity (grade \geq 3 treatment-related adverse events, 75% v 43%).¹⁴ Subgroup analyses suggest that patients with a higher burden of disease, CNS metastases, and/or higher risk disease (eg, comutations, liver metastases) may benefit from intensified therapy. However, given the unknown impact on overall survival (OS) and of sequential therapies, the toxicity of therapeutic intensification may not be appropriate for or acceptable to many patients.17,18

In addition, recent findings from the phase III PALOMA 3 study¹⁹ have established the non-inferiority of the subcutaneous (SC) formulation of amivantamab compared to the intravenous (IV) dosing in combination with lazertinib for EGFR mutation-positive NSCLC. In this study, 418 patients with EGFR mutation-positive NSCLC that had progressed on osimertinib, and chemotherapy were randomly assigned 1:1 to SC or IV amivantamab, both with lazertinib. The primary endpoint was pharmacokinetic noninferiority, with secondary endpoints including efficacy (objective response rate [ORR]), PFS, safety, administration times, and patient satisfaction). SC amivantamab plus lazertinib demonstrated noninferior pharmacokinetic properties and ORR, similar PFS, significantly fewer infusion-related reactions (13% v 66%)shorter administration time, and higher patient satisfaction at cycle 1 day 1 and the end of treatment. OS, an exploratory endpoint, was also improved in the SC arm (HR, 0.62; P = .02).

Second-Line Treatment Options Update

Recommendation 2.2. For patients who have progressive disease on osimertinib or other EGFR tyrosine kinase inhibitors (TKIs) without emergent T790M or other targetable alterations, clinicians may offer platinumbased chemotherapy with or without amivantamab (Evidence quality: Moderate; Strength of recommendation: Strong).

Qualifying Statement: Patients that do not pursue amivantamab plus chemotherapy may also consider chemotherapy plus bevacizumab if they have adenocarcinoma and bevacizumab is deemed safe.

Recommendation 2.2.2. For patients who have progressive disease on EGFR TKI, anti-PD-(L)1 agents with or without platinum chemotherapy are not recommended (Evidence quality: High; Strength of recommendation: Strong).

The MARIPOSA-2 study¹³ compared the added benefit of amivantamab to carboplatin-pemetrexed chemotherapy with and without lazertinib versus chemotherapy alone in patients with locally advanced or metastatic NSCLC with an EGFR mutation upon disease progression on osimertinib. The study enrolled 657 patients who were randomly assigned 2:2:1 to chemotherapy versus amivantamab plus lazertinib plus chemotherapy versus amivantamab plus chemotherapy. The dual primary endpoints of amivantamab plus chemotherapy and amivantamab plus lazertinib plus chemotherapy versus chemotherapy were reached with PFS of 6.3 months (HR, 0.48) and 8.3 months (HR, 0.44) versus 4.2 months, respectively. Similarly, ORR were higher in the experimental combinations versus chemotherapy alone (64% and 63% v 36%). OS results remain premature while adverse event (AE) profiles demonstrated excessive hematological toxicities in the amivantamab plus lazertinib plus chemotherapy arm necessitating a regimen change to start lazertinib upon completion of carboplatin. Anticipated additional EGFR- and MET-targeting-related AEs were seen in the amivantamab-containing regimens. While the quadruplet regimen will require longer follow-up to better understand risk-to-benefit profile, these results of the amivantamab plus chemotherapy regimen offer an evidence-based, potentially more effective approach versus doublet chemotherapy for the treatment of patients with advanced NSCLC and an EGFR mutation upon progression on front-line osimertinib. The added AE profile of amivantamab versus chemotherapy alone needs to be considered on an individual basis. There are no data available on the efficacy of this regimen following chemotherapy plus osimertinib or amivantamab plus lazertinib as initial therapy.

The phase III CheckMate 722¹⁵ study randomly assigned patients with metastatic NSCLC and an *EGFR* mutation that progressed on EGFR TKIs to receive either nivolumab plus chemotherapy or chemotherapy alone. The primary endpoint was PFS, with secondary endpoints including OS, ORR, and duration of response (DOR). A total of 294 patients were enrolled. After a median follow-up of 38.1 months, the addition of nivolumab to chemotherapy did not significantly improve PFS (5.6 v 5.4 months; HR, 0.75 [95% CI, 0.56 to 1.00]; P = .0528) or OS (19.4 v 15.9 months; HR, 0.82 [95% CI, 0.61 to 1.10]). Similarly, the KEYNOTE-789 study¹⁶ randomly assigned patients who progressed on EGFR TKIs to receive either pembrolizumab or a placebo plus chemotherapy. The dual primary endpoints were PFS and OS, with secondary endpoints including ORR and DOR. A total of 492 patients were enrolled. After a median follow-up of 42 months, there was no significant difference in PFS (5.6 v 5.5 months; HR, 0.80 [95% CI, 0.65 to 0.97]; P = .0122) or OS (15.9 v 14.7 months;

AFFILIATIONS

¹University of California San Diego Moores Cancer Center, San Diego, CA

²American Society of Clinical Oncology, Alexandria, VA

³Henry Ford Cancer Institute/Henry Ford Health System, Detroit, MI

⁴Texas Oncology, San Antonio, TX

⁵The ROS1ders, Seattle, WA

⁶Montefiore Einstein Comprehensive Cancer Center, Bronx, NY

⁷Yolanda G. Barco Cancer Institute, Meadville, PA

⁸John Hopkins Medical Center, Baltimore, MD

⁹Moffitt Cancer Center, Tampa, FL

¹⁰University of Michigan Health System, Ann Arbor, MI

¹¹Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada

CORRESPONDING AUTHOR

American Society of Clinical Oncology; e-mail: guidelines@asco.org.

EDITOR'S NOTE

This ASCO Living Clinical Practice Guideline provides recommendations, with review and analysis of the relevant literature for each recommendation. Additional information, including links to patient information at www.cancer.org, is available at www.asco.org/livingguidelines. HR, 0.84 [95% CI, 0.69 to 1.02]; P = .0362) between the study arms.

ASCO believes that cancer clinical trials are vital to inform medical decisions and improve cancer care, and that all patients should have the opportunity to participate.

ADDITIONAL RESOURCES

Additional information including a supplement, clinical tools and resources can be found at www.asco.org/living-guidelines. Patient information is available at www.cancer.org.

EQUAL CONTRIBUTION

L.B. and N.B.L. were expert panel co-chairs.

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at DOI https://doi.org/10.1200/JCO-24-02133.

AUTHOR CONTRIBUTIONS

Conception and design: All authors Collection and assembly of data: All authors Data analysis and interpretation: All authors Manuscript writing: All authors Final approval of manuscript: All authors Accountable for all aspects of the work: All authors

ACKNOWLEDGMENT

The authors wish to thank Drs Edgardo S. Santos Castillero and Latha Subramanian and the ASCO Evidence Based Medicine Committee for their thoughtful reviews and insightful comments on this guideline update.

REFERENCES

- 1. Singh N, Temin S, Baker S Jr, et al: Therapy for stage IV non-small-cell lung cancer with driver alterations: ASCO living guideline. J Clin Oncol 40:3310-3322, 2022
- 2. Singh N, Temin S, Baker S Jr, et al: Therapy for stage IV non-small-cell lung cancer without driver alterations: ASCO living guideline. J Clin Oncol 40:3323-3343, 2022
- 3. Jaiyesimi IA, Owen DH, Ismaila N, et al: Therapy for stage IV non-small-cell lung cancer with driver alterations: ASCO living guideline, version 2022.3. J Clin Oncol 41:e31-e41, 2023
- Owen DH, Singh N, Ismaila N, et al: Therapy for stage IV non-small-cell lung cancer with driver alterations: ASCO living guideline, version 2022.2. J Clin Oncol 41:e10-e20, 2023
 Owen DH, Singh N, Ismaila N, et al: Therapy for stage IV non-small-cell lung cancer with driver alterations: ASCO living guideline, version 2023.2. J Clin Oncol 41:e63-e72, 2023
- Singh N, Jaiyesimi IA, Ismaila N, et al: Therapy for stage IV non-small-cell lung cancer with driver alterations: ASCO living guideline, version 2023.1. J Clin Oncol 41:e93-e72, 2023
 Singh N, Jaiyesimi IA, Ismaila N, et al: Therapy for stage IV non-small-cell lung cancer with driver alterations: ASCO living guideline, version 2023.1. J Clin Oncol 41:e93-e72, 2023
- 7. Jaiyesimi IA, Owen DH, Ismaila N, et al: Therapy for stage IV non-small-cell lung cancer without driver alterations: ASCO living guideline, version 2022.3. J Clin Oncol 41:e21-e30, 2023
- 8. Owen DH, Singh N, Ismaila N, et al: Therapy for stage IV non-small-cell lung cancer without driver alterations: ASCO living guideline, version 2022.2. J Clin Oncol 41:e1-e9, 2023
- 9. Singh N, Jaiyesimi IA, Ismaila N, et al: Therapy for stage IV non-small-cell lung cancer without driver alterations: ASCO living guideline, version 2023.1. J Clin Oncol 41:e51-e62, 2023 10. Jaiyesimi IA, Leighl NB, Ismaila N, et al: Therapy for stage IV non-small cell lung cancer with driver alterations: ASCO living guideline, version 2023.3. J Clin Oncol 42:e1-e22, 2023
- 11. Jaiyesimi IA, Leighl NB, Ismaila N, et al: Therapy for stage IV non-small cell lung cancer without driver alterations: ASCO living guideline, version 2023.3. J Clin Oncol 42:e122; 2023
- 12. Owen DH, Ismaila N, Freeman-Daily J, et al: Therapy for stage IV non-small cell lung cancer with driver alterations: ASCO living guideline, version 2024.1. J Clin Oncol 42:e44-e59, 2024
- 13. Passaro A, Wang J, Wang Y, et al: Amivantamab plus chemotherapy with and without lazertinib in EGFR-mutant advanced NSCLC after disease progression on osimertinib: Primary results from the phase III MARIPOSA-2 study. Ann Oncol 35:77-90, 2024
- 14. Cho BC, Lu S, Felip E, et al: Amivantamab plus lazertinib in previously untreated EGFR-mutated advanced NSCLC. N Engl J Med 391:1486-1498, 2024
- 15. Mok T, Nakagawa K, Park K, et al: Nivolumab plus chemotherapy in epidermal growth factor receptor-mutated metastatic non-small-cell lung cancer after disease progression on epidermal growth factor receptor tyrosine kinase inhibitors: Final results of CheckMate 722. J Clin Oncol 42:1252-1264, 2024
- Yang JCH, Lee DH, Lee JS, et al: Phase III KEYNOTE-789 study of pemetrexed and platinum with or without pembrolizumab for tyrosine kinase inhibitor-resistant, *EGFR*-mutant, metastatic nonsquamous non-small cell lung cancer. J Clin Oncol 10.1200/JC0.23.02747 [epub ahead of print on August 22, 2024]

Bazhenova et al

- 17. Janne PA, Planchard D, Kobayashi K, et al: CNS efficacy of osimertinib with or without chemotherapy in epidermal growth factor receptor-mutated advanced non-small-cell lung cancer. J Clin Oncol 42:808-820, 2024
- Felip E, Cho BC, Gutiérrez V, et al: Amivantamab plus lazertinib versus osimertinib in first-line EGFR-mutant advanced non-small-cell lung cancer with biomarkers of high-risk disease: A secondary analysis from MARIPOSA. Ann Oncol 35:805-816, 2024
- Leighl NB, Akamatsu H, Lim SM, et al: Subcutaneous versus intravenous amivantamab, both in combination with lazertinib, in refractory epidermal growth factor receptor-mutated non-small cell lung cancer: Primary results from the phase III PALOMA-3 study. J Clin Oncol 42:3593-3605, 2024

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Therapy for Stage IV Non-Small Cell Lung Cancer With Driver Alterations: ASCO Living Guideline, Version 2024.2

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Lyudmila Bazhenova

Consulting or Advisory Role: Genentech/Roche, Regeneron, Merck, Neuvogen, Bayer, Sanofi, AbbVie, Janssen Oncology, Gilead Sciences, Anheart Therapeutics, BioAtla, Pfizer, Teligene, Boehringer Ingelheim, Summit Pharmaceuticals, BMS GmbH & Co KG, AstraZeneca, Daichi, Novocure

Nofisat Ismaila

Employment: GlaxoSmithKline (I) Stock and Other Ownership Interests: GlaxoSmithKline (I)

Fawzi Abu Rous

Honoraria: OncLive/MJH Life Sciences, MSTCVS Consulting or Advisory Role: AstraZeneca, Merus, Pfizer, BMS GmbH & Co. KG, Roche/Genentech, Daiichi Sankyo/Astra Zeneca Research Funding: Conquer Cancer, The ASCO Foundation

Krishna Alluri

Stock and Other Ownership Interests: AbbVie

Janet Freeman-Daily

Consulting or Advisory Role: Turning Point Therapeutics, Bristol Myers Squibb, Troper Wojcicki Foundation

Travel, Accommodations, Expenses: Nuvalent, Inc, Redwood Pacific Management LLC

Uncompensated Relationships: Turning Point Therapeutics (Inst), Genentech (Inst), AnHeart Therapeutics (Inst), Nuvalent, Inc (Inst), Pfizer (Inst), Bristol Myers Squibb/Turning Point Therapeutics

Balazs Halmos

Consulting or Advisory Role: AstraZeneca, Genentech/Roche, Pfizer, Takeda, Novartis, Merck, Bristol Myers Squibb, Turning Point Therapeutics, Apollomics, Janssen Oncology, Veracyte, BeiGene, Arcus Biosciences, Merus, Lilly, Bayer, Daiichi Sankyo/Lilly

Research Funding: Merck (Inst), AstraZeneca (Inst), Mirati Therapeutics (Inst), Boehringer Ingelheim (Inst), Roche/Genentech (Inst), Pfizer (Inst),

Takeda (Inst), AbbVie (Inst), Bristol Myers Squibb (Inst), GlaxoSmithKline (Inst), Blueprint Medicines (Inst), Novartis (Inst), Advaxis (Inst), Janssen Oncology (Inst), Elevation Oncology (Inst), Daiichi Sankyo/Astra Zeneca (Inst), Amgen, Black Diamond Therapeutics (Inst), Forward (Inst), Tesaro/GSK (Inst), Regeneron (Inst), Jazz Pharmaceuticals (Inst)

Kristen A. Marrone

Honoraria: AstraZeneca

Consulting or Advisory Role: AstraZeneca, Amgen, Janssen, Mirati Therapeutics, Daiichi Sankyo/Lilly, Regeneron **Research Funding:** Bristol Myers Squibb (Inst), AstraZeneca (Inst), Mirati Therapeutics

Sonam Puri

Honoraria: Aptitude Health (Inst), IntegrityCE Consulting or Advisory Role: G1 Therapeutics, Jazz Pharmaceuticals (Inst), Pfizer, Bristol Myers Squibb/Roche, Novocure, OncoHost, Takeda Travel, Accommodations, Expenses: Dava Oncology, Henlius

Angel Qin

Honoraria: OncLive/MJH Life Sciences, IDEOlogy Health, Medscape Consulting or Advisory Role: Summit Therapeutics, Regeneron, Strata Oncology, Janssen, Genentech/Roche, Pfizer Research Funding: AstraZeneca (Inst), Roche (Inst), Janssen Oncology (Inst), Merck (Inst)

Natasha B. Leighl

Honoraria: BeiGene, BMS, Janssen, MSD Oncology, Takeda Research Funding: MSD (Inst), Lilly (Inst), AstraZeneca Canada (Inst), Inivata/NeoGenomics (Inst), Janssen Oncology (Inst), Novartis (Inst), Pfizer (Inst)

Travel, Accommodations, Expenses: AstraZeneca

No other potential conflicts of interest were reported.

APPENDIX 1. GUIDELINE DISCLAIMER

The Clinical Practice Guidelines and other guidance published herein are provided by ASCO to assist clinicians in clinical decision making. The information herein should not be relied upon as being complete or accurate, nor should it be considered as inclusive of all proper treatments or methods of care or as a statement of the standard of care. With the rapid development of scientific knowledge, new evidence may emerge between the time information is developed and when it is published or read. The information is not continually updated and may not reflect the most recent evidence. The information addresses only the topics specifically identified therein and is not applicable to other interventions, diseases, or stages of diseases. This information does not mandate any particular course of medical care. Further, the information is not intended to substitute for the independent professional judgment of the treating clinician, as the information does not account for individual variation among patients. Recommendations specify the level of confidence that the recommendation reflects the net effect of a given course of action. The use of words like "must," "must not," "should," and "should not" indicates that a course of action is recommended or not recommended for either most or many patients, but there is latitude for the treating physician to select other courses of action in individual cases. In all cases, the selected course of action should be considered by the treating clinician in the context of treating the individual patient. Use of the information is voluntary. ASCO does not endorse third party drugs, devices, services, or therapies used to diagnose, treat, monitor, manage, or alleviate health conditions. Any use of a brand or trade name is for identification purposes only. ASCO provides this information on an "as is" basis and makes no warranty, express or implied, regarding the information. ASCO specifically disclaims any warranties of merchantability or fitness for a particular use or purpose. ASCO assumes no responsibility for any injury or damage to persons or property arising out of or related to any use of this information, or for any errors or omissions.

APPENDIX 2. GUIDELINE AND CONFLICTS OF INTEREST

The Expert Panel was assembled in accordance with ASCO's Conflict of Interest Policy Implementation for Clinical Practice Guidelines ("Policy," found at http:// www.asco.org/guideline-methodology). All members of the Expert Panel completed ASCO's disclosure form, which requires disclosure of financial and other interests, including relationships with commercial entities that are reasonably likely to experience direct regulatory or commercial impact as a result of promulgation of the guideline. Categories for disclosure include employment; leadership; stock or other ownership; honoraria, consulting or advisory role; speaker's bureau; research funding; patents, royalties, other relationships. In accordance with the Policy, the majority of the members of the Expert Panel did not disclose any relationships constituting a conflict under the Policy.

TABLE A1. Stage IV Non-Small Cell Lung Cancer Living Guideline Expert Panel Membership

Name	Affiliation	Role or Area of Expertise
Co-chairs		
Lyudmila Bazhenova, MD	University of California, San Diego, San Diego, CA	Medical Oncology
Natasha B. Leighl, MD	Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada	Medical Oncology
Dwight H. Owen, MD, MS	Ohio State University, Columbus, OH	Medical Oncology
Jyoti Patel, MD	Northwestern University, Chicago, IL	Medical Oncology
anel members		
Fawzi Abu Rous, MD	Henry Ford Cancer Institute/Henry Ford Health System, Detroit, MI	Medical Oncology
Amith Ahluwalia, MD	Confluence Health Wenatchee Valley Hospital and Clinics, Wenatchee, WA	Medical Oncology
Krishna Alluri, MD	Texas Oncology, San Antonio, TX	Medical Oncology
Ibrahim Hanna Azar, MD	IHA Hematology Oncology Consultants, Ypsilanti, MI	Medical Oncology
Greg Durm, MD	Indiana University Health, Indianapolis, IN	Medical Oncology
Jill Feldman, MA	EGFR Resisters patient advocacy group, Deerfield, IL	Patient Research Advocate
Narjust Florez, MD	Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA	Medical Oncology
Janet Freeman-Daily, MSc, Engr	The ROS1ders, Seattle, WA	Patient Research Advocate
Naoki Furuya, MD, PhD	St Marianna University School of Medicine, Kawasaki, Japan	Medical Oncology
Shirish Gadgeel, MD	Henry Ford Cancer Institute/Henry Ford Health System, Detroit, MI	Medical Oncology
Balazs Halmos, MD	Montefiore Einstein Comprehensive Center for Cancer Care, Bronx, NY	Medical Oncology
Sara Kuruvilla, MD (Ontario Health representative)	London Health Sciences Centre, London, ON, Canada	Medical Oncology
Narinder Malhotra, MD	Medicus Healthcare Solutions, Windham, NH	Medical Oncology
Kristen Ashley Marrone, MD	John Hopkins Medical Center, Baltimore, MD	Medical Oncology
Deebya Raj Mishra, MD	BP Koirala Institute of Health Sciences, Kathmandu, Nepal	Pulmonology
Michael Mullane, MD	Aurora Cancer Care, Mount Pleasant, WI	Medical Oncology
Jarushka Naidoo, MBBCh	Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD	Medical Oncology
Bruna Pellini, MD	Moffitt Cancer Center, Tampa, FL	Medical Oncology
Carolyn J. Presley, MD, MHS	Ohio State University, Comprehensive Cancer Center and The James Cancer Hospital/Solove Research Institute, OH	Medical Oncology Geriatric Oncology
Sonam Puri, MD	Moffitt Cancer Center, Tampa, FL	Medical Oncology
Angel Qin, MD	University of Michigan Health System, Ann Arbor, MI	Medical Oncology
Joshua Reuss, MD	Georgetown University, Washington, DC	Medical Oncology
Logan Roof, MD	Ohio State University, Columbus, OH	Medical Oncology
Erin L. Schenk, MD, PhD	University of Colorado Anschutz Medical Center, Aurora, CO	Medical Oncology
Lecia Sequist, MD, MPH	Massachusetts General Hospital, Boston, MA	Medical Oncology
Navneet Singh, MD, DM	Postgraduate Institute of Medical Education and Research, Chandigarh, India	Medical Oncology
Eric K. Singhi, MD	University of Texas MD Anderson Cancer Center, Houston, TX	Medical Oncology
Ana I. Velazquez, MD, MSc	University of California, San Francisco, CA	Medical Oncology
Yubao Wang, MD, PhD	Lovelace Cancer Care, Albuquerque, NM	Medical Oncology
Paul Wheatley Price, MD, MBChB	The Ottawa Hospital Cancer Centre, Ottawa, ON, Canada	Medical Oncology
Nofisat Ismaila, MD	ASCO, Alexandria, VA	ASCO Practice Guideline St (Health Research Method

TABLE A2. All Recommendations

Driver Alteration	Recommendation	Evidence Quality	Strength of Recommendation			
efficacy and toxicity. All biomarkers should be available The following recommendations (sti	treatment options of the same evidence quality and strength of recommendation, the decision c at the time of decision making. rong or weak/conditional) and terminology (Data Supplement, online only) represent reasonable of commended care should be accessible to patients whenever possible	-				
Clinical Question 1: What are the mos	st effective first-line treatment options for patients' status based on the driver alterations:					
EGFR	Exon 19 deletion, exon 21 L858R substitution					
	1.1. Clinicians should offer osimertinib	Moderate	Strong			
	1.1.1. Clinicians may offer osimertinib with platinum doublet chemother- apy or amivantamab plus lazertinib	Moderate	Weak			
	Qualifying Statement: Although Recommendation 1.1 addresses many patients in the may be reasonable, based on the evidence reviewed. In addition, use of osimerti guideline					
	Others					
	1.2. For other activating <i>EGFR</i> alterations, (G719X, L861Q, S768I), clinicians may offer afatinib	Low	Strong			
	1.2.1. or osimertinib	Low	Weak			
	1.2.2. or standard treatment following the nondriver alteration guideline	Weak				
	Qualifying Statement: Recommendations 1.2, 1.2.1, and 1.2.2 exclude exon 20 insertion alterations, T790M					
	1.3. For any activating <i>EGFR</i> alteration, regardless of PD-L1 expression Moderate levels (including exon 20 insertions), single-agent immune checkpoint inhibitors should not be offered as first-line therapy		Strong			
	Exon 20 insertions					
	1.4. Clinicians may offer chemotherapy and amivantamab	Moderate	Strong			
	1.5. If amivantamab is not available, clinicians should offer standard treatment following the nondriver alteration guideline	Moderate	Strong			
ALK	1.6. Clinicians should offer alectinib or brigatinib or lorlatinib	High	Strong			
	 If alectinib, brigatinib, or lorlatinib are not available, clinicians should offer ceritinib or crizotinib 	High	Strong			
ROS1	1.8. Clinicians may offer crizotinib, entrectinib, or repotrectinib	Moderate	Strong			
	1.9. If crizotinib, entrectinib, or repotrectinib are not available or not tolerated, clinicians may offer ceritinib or lorlatinib	Low	Weak			
BRAF ^{V600E}	1.10. Clinicians may offer dabrafenib and trametinib, or encorafenib and binimetinib	Low	Strong			
	1.11. If dabrafenib and trametinib, or encorafenib and binimetinib are not available, clinicians may offer standard first-line therapy following the nondriver alteration guideline	Low	Strong			
MET exon 14 skipping mutation	1.12. Clinicians may offer capmatinib or tepotinib	Low	Strong			
	1.13. If capmatinib or tepotinib is not available, clinicians may offer standard first-line therapy following the nondriver alteration guidelines	Low	Strong			
	(continued on following page)					

TABLE A2. All Recommendations (continued)

Driver Alteration	Recommendation	Evidence Quality	Strength of Recommendation
RET rearrangement	1.14. Clinicians should offer selpercatinib	High	Strong
	1.15. If selpercatinib is not available, clinicians may offer pralsetinib	Moderate	Strong
	1.16. If selpercatinib or pralsetinib are not available, clinicians may offer standard therapy following the nondriver alteration guideline	Low	Weak
NTRK rearrangement	1.17. Clinicians may offer entrectinib or larotrectinib	Low	Strong
	1.18. If entrectinib or larotrectinib are not available, clinicians may offer standard therapy following the nondriver alteration guideline	Low	Weak
1.19. For patients with a poor PS,	TKI may be offered based on drug access and toxicity profile	Low	Weak
1.20. Biomarker testing with a tissu universally accessible for all pati	e- and blood-based broad multigene panel and an IHC assay for PD-L1 and HER2 should be ients diagnosed with NSCLC	High	Strong
Qualifying Statement: PD-L1 IHC a	lone should not be used to guide treatment decisions. Treatment decisions based on HER2 overe	xpression are restricted to second	line and beyond
	ancer should be referred to interdisciplinary palliative care teams (consultation) that provide rly in the course of disease, alongside active treatment of their cancer	High	Strong
Clinical Question 2: What are the r	nost effective second-line and subsequent treatment options for patients based on the driver alte	rations:	
	lly targetable resistance mechanisms, every effort should be made to assess for presence of new leted options, or if no targeted options are available, clinicians may offer standard therapy followir		
EGFR	Exon 19 deletion, exon 21 L858R substitution		
_	2.1. For patients that develop EGFR T790M resistance alterations in tumor after first- or second-generation EGFR TKIs, clinicians should offer osimertinib	Strong	
_	2.2. For patients who have progressive disease on osimertinib or other EGFR TKIs without emergent T790M or other targetable alterations, clinicians may offer platinum-based chemotherapy with or without amivantamab	Moderate	Strong
	Qualifying Statement: Patients that do not pursue amivantamab plus chemothera adenocarcinoma and bevacizumab is deemed safe	py may also consider chemotherap	y plus bevacizumab if they have
_	2.2.1. For patients who have progressive disease on osimertinib (or other third generation TKI), clinicians may offer platinum-based chemotherapy with or without amivantamab	Moderate	Strong
	2.2.2. For patients who have progressive disease on EGFR TKI, anti-PD-(L)1 agents with or without platinum chemotherapy are not recommended	High	Strong
	Others		
_	2.3. For patients with an exon 20 insertion alteration who have received prior treatment with platinum chemotherapy, clinicians may offer treatment with amivantamab	Low	Strong
ALK	2.4. For patients who have previously received crizotinib, clinicians should offer alectinib, brigatinib, or ceritinib, and may offer lorlatinib	Moderate	Strong
		Low	Strong
	2.5. For patients who have previously received other ALK inhibitors in- cluding alectinib or brigatinib, clinicians may offer lorlatinib	LOW	Strong

TABLE A2. All Recommendations (continued)

Driver Alteration	Recommendation	Evidence Quality	Strength of Recommendation
ROS1	2.6. For patients who have previously received crizotinib, entrectinib, lorlatinib, or ceritinib, clinicians may offer repotrectinib	Moderate	Strong
	2.7. For patients who have received multiple <i>ROS-1</i> inhibitors, clinicians should offer platinum-based chemotherapy following the nondriver alteration guideline	Low	Strong
BRAF ^{V600E}	2.8. For patients who have not received BRAF therapy, clinicians may offer dabrafenib and trametinib or encorafenib and binimetinib	Low	Strong
	2.9. For patients who have previously received BRAF- or MEK-targeted therapy, clinicians should offer standard first-line therapy following the nondriver alteration guideline	Low	Strong
	2.10. For <i>BRAF</i> alterations other than <i>BRAF</i> V600E alterations, clinicians should offer standard therapy following the nondriver alteration guideline	Low	Strong
MET exon 14 skipping mutation	2.11. For patients who have not received <i>MET</i> -targeted therapy, clinicians may offer capmatinib or tepotinib	Low	Strong
	2.12. For patients previously treated with <i>MET</i> -targeted therapy, clinicians should offer standard therapy following the nondriver alteration guideline	Low	Strong
RET rearrangement	2.13. For patients who have not received a <i>RET</i> inhibitor, clinicians should offer selpercatinib or pralsetinib	Moderate	Strong
	2.14. If selpercatinib or pralsetinib is not available, clinicians may offer treatment following the nondriver alteration guideline	Low	Strong
NTRK rearrangement	2.15. For patients who have not received an <i>NTRK</i> inhibitor, clinicians should offer entrectinib or larotrectinib	Low	Strong
	2.16. If entrectinib or larotrectinib is not available, clinicians may offer standard therapy following the nondriver alteration guideline	Low	Strong
HER2 mutation	2.17. Clinicians may offer treatment with trastuzumab deruxtecan	Low	Strong
KRAS G12C	2.18. Clinicians may offer treatment with sotorasib	Moderate	Strong
	2.19. Clinicians may offer treatment with adagrasib	Low	Strong
	Qualifying Statement: Note that adagrasib and sotorasib are approved for patients advanced <i>KRAS</i> G12C mutant NSCLC. In the first-line setting, these patients sho therapy and/or chemotherapy following the nondriver alteration guideline	who have received prior chemother	apy and/or anti-PD-(L)1 for patients wi

NOTE. The strength of the recommendation is defined as follows: Strong: In recommendations for an intervention, the desirable effects of an intervention outweigh its undesirable effects. In recommendations against an intervention, the undesirable effects of an intervention outweigh its desirable effects. All or almost all informed people would make the recommended choice for or against an intervention. Weak/conditional: In recommendations for an intervention, the desirable effects probably outweigh the undesirable effects, but appreciable uncertainty exists. In recommendations against an intervention, the undesirable effects probably outweigh the desirable effects, but appreciable uncertainty exists. Most informed people would choose the recommended course of action, but a substantial number would not.

Abbreviations: ALK, anaplastic lymphoma kinase; EGFR, epidermal growth factor receptor; HER2, human epidermal receptor factor 2; NSCLC, non-small cell lung cancer; NTRK, neurotrophic tyrosine receptor kinase; PS, performance status; TKI, tyrosine kinase inhibitor.

TABLE A3. Patients With Stage IV NSCLC and an Untreated EGFR-Mutation (exon 1)	19 deletion or L858R): Amivantamab-Lazertinib Versus Osimertinib ¹⁴
--	--

		Absolute Effect Estimates			
Outcome	Study Results and Measurements	Osimertinib	Amivantamab-Lazertinib	Quality of Evidence	Summary
PFS	HR, 0.7 (95% Cl, 0.58 to 0.85)	587 per 1,000	462 per 1,000	Moderate ^a	Amivantamab-lazertinib improves PFS
	Based on data from 858 participants in 1 study Follow-up 22 months	Difference: 125 fewer per 1,000	Difference: 125 fewer per 1,000 (95% Cl, 186 fewer to 59 fewer)		
OS	HR, 0.8 (95% CI, 0.61 to 1.05)	273 per 1,000	225 per 1,000	Moderate ^a	Impact of amivantamab-lazertinib OS are
Based on data from 858 participants in 1 study Follow-up 22 months		Difference: 48 fewer per 1,000 (95% CI, 96 fewer to 11 more)			premature
Safety	Based on data from 849 participants in 1 study Follow-up 22 months	Grade 3 or higher AEs were reported in 75% of the patients treated with amivantamab-lazertinib, and in 43% of those treated with osimertinib, with paronychia and rash being the most common events. Serious AEs were reported in 49% of the patients treated with amivantamab-lazertinib and in 33% of those treated with osimertinib		Moderate ^a	Predominant AEs were EGFR-related toxic effects. The incidence of discontinuation of all agents due to treatment-related AE was 10% with amivantamab-lazertinib and 3% with osimertinib

TABLE A4. Patients With Stage I	V NSCLC and an EGFR-Mutation	າ (exon 19 deletion or L8	858R): Amivantamab-Lazertinib-Che	emotherapy Versus
Chemotherapy ¹³				

		Absolute Effect Estimates			
Outcome	Study Results and Measurements	Chemotherapy	Amivantamab-Lazertinib- chemotherapy	Quality of Evidence	Summary
PFS	HR, 0.44 (95% Cl, 0.35 to 0.56)	650 per 1,000	370 per 1,000	Moderate ^a	Amivantamab-lazertinib-
	Based on data from 526 participants in 1 study Follow-up 8.7 months	Difference: 280 fewer per 1,000 (95% Cl, 343 fewer to 205 fewer)		_	chemotherapy probably improves PFS
Intracranial	HR, 0.58 (95% Cl, 0.44 to 0.78)	662 per 1,000	467 per 1,000	Moderate ^a	Amivantamab-lazertinib-
PFS	Based on data from	Difference: 195 fewer per 1,000 (95% Cl, 282 fewer to 91 fewer)			chemotherapy probably improves intracranial PFS
Safety	Based on data from 526 participants in 1 study Follow-up 8.7 months	AEs of grade 3 or higher, mainly due to hematologic toxicities, were reported by 72% of patients treated with amivanta- mab + chemotherapy, 92% with ami- vantamab + lazertinib + chemotherapy, and 48% with chemotherapy		Moderate ^a	The most common grade 3 or higher AEs (10% or higher in any arm) included neutropenia, thrombocytopenia, anemia, and leukopenia

Abbreviations: AE, adverse event; HR, hazard ratio; PFS, progression-free survival.

^aCertainty of evidence is affected by interim nature of these results and data provided by one study.

Xinical Oncology	
<	TABI
	muta

TABLE A5. Patients Who Have Progressive Disease on First- or Second-Generation EGFR Tyrosine Kinase Inhibitor Therapy (without EGFR T790M mutation) or Osimertinib (with/without T790M mutation): Nivolumab + Platinum-Doublet Chemotherapy Versus Platinum-Doublet Chemotherapy Alone¹⁵

	Study Results and Measurements	Absolute Effect Estimates			
Outcome		Platinum-Doublet Chemotherapy Alone	Nivolumab + Platinum-Doublet Chemotherapy	Quality of Evidence	Summary
PFS	HR, 0.75 (95% Cl, 0.56 to 1.0)		Low ^a	Nivolumab + platinum-doublet che-	
	Based on data from 294 participants in one study Follow-up 38.1 months	Difference: 80 fewer per 1,00	00 (95% Cl, 179 fewer to 0 fewer)		motherapy may have little or no difference on PFS
OS	HR, 0.82 (95% CI, 0.61 to 1.1)	693 per 1,000	620 per 1,000	Low ^a	Nivolumab + platinum-doublet che-
Based on data from 294 participants in one study Follow-up 38.1 months		Difference: 73 fewer per 1,000 (95% CI, 180 fewer to 34 more)			motherapy may have little or no difference on OS
Safety	Based on data from 294 participants in one study Follow-up 38.1 months		AEs were reported in 85.1% and 44.7% of plus chemotherapy arm and 86.7% and y arm, respectively	Low ^a	The most common any-grade TRAEs in both arms were anemia (39.7% with nivolumab plus chemother- apy and 35.0% with chemother- apy) and nausea (31.2% and 35.0%); the most frequent grade 3/ 4 events were anemia (15.6% and 9.1%) and decreased neutrophil count (11.3% and 11.2%). Any grade TRAEs leading to treatment discontinuation occurred in 14.9% and 7.7% of patients, respectively

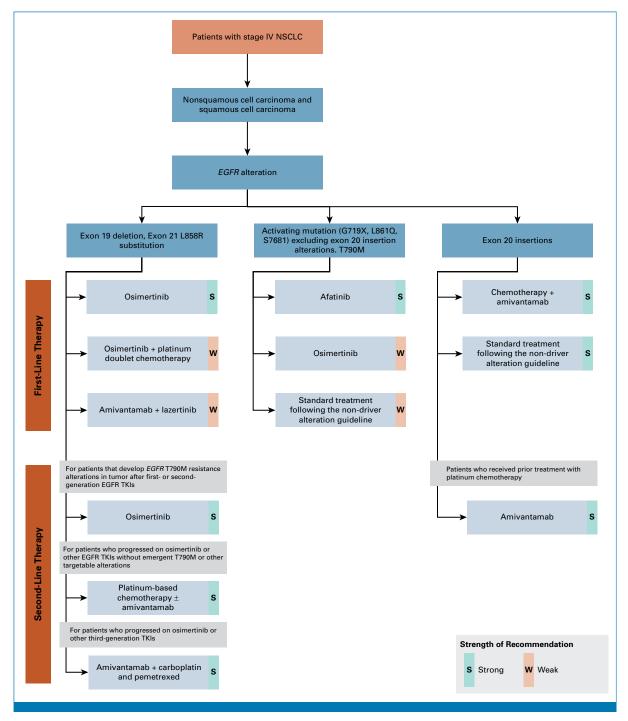

Abbreviations: AE, adverse event; HR, hazard ratio; OS, overall survival; PFS, progression-free survival; TRAEs, treatment-related adverse events. ^aCertainty of evidence is affected by low number of patients, which was due to slow accrual, and data provided by one study.

TABLE A6. Patients Who Have Progressive Disease EGFR TKI Therapy (DEL19 or L858R EGFR mutation): Pembrolizumab + Pemetrexed-Platinum
Versus Placebo + Pemetrexed-Platinum ¹⁶

		Absolute Effect Estimates			
Outcome	Study Results and Measurements	Placebo + Pemetrexed- Platinum	Pembrolizumab + Pemetrexed- Platinum	Quality of Evidence	Summary
	HR: 0.84 (95% CI, 0.69 to 1.02) On the basis of data from 492	907 per 1,000	864 per 1,000	Moderate ^a	Pembrolizumab + pemetrexed-platinum has little or no
	participants in one study Follow-up, 28.6 months	Difference: 43 fewer per 1,000 (95% Cl, 101 fewer to 4 more)		-	difference on OS
PFS	HR: 0.8 (95% Cl, 0.65 to 0.97) On the basis of data from 492 participants in one study Follow-up, 28.6 months	866 per 1,000	800 per 1,000	Moderate ^a	Pembrolizumab + pemetrexed-platinum has little or no difference on PFS
		Difference: 66 fewer per 1,000 (95% Cl, 137 fewer to 8 fewer)		_	
Safety	On the basis of data from 492 participants in one study Follow-up, 28.6 months	AEs of any grade occurred in 239 of 245 treated patients (97.6%) in the pem- brolizumab-chemotherapy group and 241 of 246 patients (98.0%) in the placebo-chemotherapy group. Treat- ment-related AEs occurred in 220 pa- tients (89.8%) and 212 patients (86.2%), respectively. These were grade ≥3 in 107 (43.7%) and 95 (38.6%) pa- tients, respectively		Moderateª	Immune-mediated AEs and infusion reactions occurred in 49 patients (20.0%) who received pembrolizumab-chemotherapy and 20 (8.1%) in the placebo-chemotherapy group The only fatal immune-mediated event was myocarditis (0.4%) in the pembrolizumab-chemotherapy group

Abbreviations: AEs, adverse events; HR, hazard ratio; OS, overall survival; PFS, progression-free survival. aImprecision: Serious. Only data from one study.

FIG A1. Algorithm for stage IV NSCLC with *EGFR* alterations. For recommendations with multiple treatment options of the same evidence quality and strength of recommendation, the decision of which agent to offer should be tailored to each patient incorporating both efficacy and toxicity. All biomarkers should be available at the time of decision making. For second-line and subsequent therapies, due to development of potentially targetable resistance mechanisms, every effort should be made to assess for presence of new mutation by tissue and/or blood NGS testing. If patients have received all targeted options, or if no targeted options are available, clinicians may offer standard therapy following the nondriver alteration guideline. For alterations without targeted therapy options, refer to the nondriver alteration guideline, Therapy for Stage IV Non–Small Cell Lung Cancer Without Driver Alterations: ASCO living Guideline. New active targeted therapies are anticipated soon. EGFR, epidermal growth factor receptor; NGS, next-generation sequencing; NSCLC, non–small cell lung cancer; TKI, tyrosine kinase inhibitor.