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A B S T R A C T

Purpose: This guideline will discuss radiotherapeutic management of IDH-mutant grade 2 and grade 3 diffuse 
glioma, using the latest 2021 WHO (5th) classification of brain tumours focusing on: imaging modalities, tumour 
volume delineation, irradiation dose and fractionation.
Methods: The ESTRO Guidelines Committee, CNS subgroup, nominated 15 European experts who identified 
questions for this guideline. Four working groups were established addressing specific questions concerning 
imaging, target volume delineation, radiation techniques and fractionation. A literature search was performed, 
and available literature was discussed. A modified two-step Delphi process was used with majority voting 
resulted in a decision or highlighting areas of uncertainty.
Results: Key issues identified and discussed included imaging needed to define target definition, target delin-
eation and the size of margins, and technical aspects of treatment including different planning techniques such as 
proton therapy.
Conclusions: The GTV should include any residual tumour volume after surgery, as well as the resection cavity. 
Enhancing lesions on T1 imaging should be included if they are indicative of residual tumour. In grade 2 tu-
mours, T2/FLAIR abnormalities should be included in the GTV. In grade 3 tumours, T2/FLAIR abnormalities 
should also be included, except areas that are considered to be oedema which should be omitted from the GTV. A 
GTV to CTV expansion of 10 mm is recommended in grade 2 tumours and 15 mm in grade 3 tumours. A 
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treatment dose of 50.4 Gy in 28 fractions is recommended in grade 2 tumours and 59.4 Gy in 33 fractions in 
grade 3 tumours. Radiation techniques with IMRT are the preferred approach.

Introduction

The 2016 and 2021 updates of the WHO Classification of Tumours of 
the Central Nervous System changed the diagnostic classification by the 
integration of molecular markers in the routine diagnostics of brain 
tumours [1,2]. IDH mutational status is now a key element in the clas-
sification of adult-type diffuse gliomas. IDH-mutant diffuse gliomas are 
then subdivided into those with 1p/19q codeletion (oligoden-
drogliomas) and without codeletion (astrocytomas). Tumours are then 
categorized into grades 2, 3 or 4 according to morphological and mo-
lecular features [3]. The change in classification introduces new chal-
lenges in translating results from past trials into present-day clinical 
care. In addition, new methods of radiotherapy dose-delivery, as well as 
the increased availability of advanced structural and functional imaging, 
warrant new consensus guidelines on radiotherapy for lower grade 
diffuse glioma. Therefore, the European Society for Radiotherapy and 
Oncology (ESTRO) together with the European Association of Neuro- 
Oncology (EANO) developed this guideline for radiotherapy of IDH- 
mutant, grade 2 and 3 diffuse gliomas in adults. High grade, WHO grade 
4, gliomas (HGG) are addressed in a separate guideline [4].

Methods

The ESTRO Guidelines Committee, CNS subgroup, nominated 16 
European experts who identified areas of clinical uncertainty to be 
answered in this guideline. Four areas were addressed: 1). Imaging, 2). 
Radiotherapy (RT) volumes, 3). Radiotherapy techniques, and 4). 
Radiotherapy dose and fractionation.

Timing and sequencing of treatment were not included as this has 
been discussed extensively elsewhere [5].

For each topic, a literature search was performed including literature 
from 1990 to 2022. Both MeSH terms and text words were used with the 

following search terms: (“Low grade glioma/radiotherapy” [MeSH] OR 
“higher grade glioma” OR “malignant glioma” OR high-grade glioma) 
AND ((delineation) OR (target volume) OR (CTV) OR (PTV) OR (margin) 
OR (recurrence pattern) OR (contouring) OR (organs at risk) OR (radi-
ation technique /brachytherapy/protons). For the imaging section of 
this guideline, a separate search was performed including the terms 
“MRI” and “magnetic resonance imaging” and “CT”. Additionally, na-
tional guidelines from the Netherlands, USA and the UK, and trial pro-
tocols from the EORTC, were consulted. It was agreed upon that only 
literature-based 3D-conformal or more sophisticated radiotherapy 
should be included. The final literature review was conducted in July 
2023.

The findings from the literature search were discussed in regular 
online meetings and are summarised in Tables 1 to 4. Decisions were 
made by a majority vote with at least a of 51 % agreement in case of 
open questions. Open questions were identified, and recommendations 
made according to a modified Delphi process – 13 out of 15 experts took 
part in two predefined rounds in which 65 % agreement was defined as 
‘consensus’ and 80 % as ‘strong consensus’.Table 5.

Additional experts from the EANO (MvdB, RR) participated in 
reviewing and drafting the manuscript.

Results

Imaging

Currently, 3 Tesla (3 T) MRI is the desired clinical standard, while 
1.5 T is also completely acceptable despite a lower signal-to-noise ratio 
[6] (Delphi: strong consensus [92.9 %]). There are also, promising 
studies suggesting that ultra-high field (starting at 7 T) may provide 
superior images for dose planning [7].

There is a widely accepted standardized imaging protocol for 

Table 1 
Trials investigating adjuvant chemotherapy in grade 2 and 3 diffuse gliomas.

Trial name Inclusion Astro Oligo “Oligo 
astro”

Randomisation Radiotherapy Conclusions

2 3 2 3 2 3

RTOG9802 [83] 1998–2002 x  x  x  PCV vs observation 30*1.8 Gy PCV improved OS 
(13.3 vs 7.8y).

RTOG9402 [76] 1994–2002    x  x PCV vs observation 33*1.8 Gy PCV did not improve 
OS (4.6 vs 4.7y). 
However, significant 
OS benefit in 1p/19q 
codeleted tumours 
(14.7 vs 7.3y).

EORTC 26,951 
[77]

1995–2002    x  x PCV vs observation 33*1.8 Gy PCV improved OS 
(3.5 vs 2.6 y).

RTOG0424 [84] 2005–2009 x  x  x  TMZ concurrent or adjuvant vs historical controls 30*1.8 Gy Inclusion based on 
>3 Pignatti risk factors. 
OS 8.2 years was an 
improvement over 
historical controls.

CATNON [75] 2007–2015  x     TMZ concurrent vs TMZ adjuvant vs TMZ concurrent and 
adjuvant vs observation (2x2 design)

33*1.8 Gy TMZ adjuvant impro- 
ved OS (6.9 vs 3.9y). 
TMZ concurrent did 
not improve OS 
(5.6 vs 5.0y).

NOA04 [78] 1999–2005  x  x  (x) Observation vs PCV vs TMZ (2–1-1 design) No data No OS benefit for 
chemotherapy 
(8.0 vs 6.5y)

RTOG9813 [85] 2002–2007  x     PCV vs TMZ 33*1.8 Gy No difference in OS 
(3.9y vs 3.8y). TMZ 
was better tolerated.
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primary brain tumours [8], but this is focused on reaching the correct 
diagnosis and is not optimized for postsurgical treatment planning. The 
imaging protocol for RT planning must optimally define tumour borders 
without geometric image distortions. Three-dimensional (3D) sequences 
applying gap-free isotropic voxels of 1 mm or less are advised to guar-
antee a spatial resolution of images with minimal geometric distortions 
[9] Geometric distortions can compromise the accuracy of delineation 
and planning, and should be reduced. This can be accomplished using 
post-processing tools, which often occurs automatically during recon-
struction. Infratentorial lesions show improved rigid CT co-registration 
if the head position on CT and MRI matches but mask immobilisation 
for RT planning MRI is not the clinical standard [10].

For RT planning, it is recommended is to use a combination of a 3D 
T2-weighted fluid-attenuated inversion recovery sequence (FLAIR) and 
a 3D T1-weighted sequence with and without contrast. 3D T1-weighted 
sequences can differ in image contrast of grey and white matter [11]. 
Greater structure contrast can be achieved by use of intravenous 
gadolinium-based contrast agent administration, which identify tumour 
regions showing blood–brain barrier disruption which can indicate areas 
of tumour transformation to a higher-grade lesion. Technically it is 
possible to delineate grade 2 and 3 diffuse glioma only on T2-weighted 
images without contrast-enhanced MRI sequences. The early post- 
operative MRI scan (<48–72 h after surgery) can have surgical 
cellular debris and infarctions which can disguise or mimic RT-relevant 
tumour, and perifocal tumour oedema may not have resolved or may 
even extend. So, for lower grade diffuse glioma, where growth is slow, 
there is the time to enable these changes to resolve (e.g., repeat scan 3–4 
months after surgery) [12]. Consequently, a new MRI scan is recom-
mended when RT is being planned to enable more precise target 
delineation.

Following radiotherapy, most guidelines recommend an initial in-
terval between follow-up MRIs of 3 to 6 months, that can be extended to 
9 to 12 months in stable patients. Additionally, a baseline MRI scan on 
completion of radiotherapy is recommended [13]. Of note, a substantial 
proportion of irradiated lower grade gliomas shows signs of pseudo- 
progression or other treatment related changes [14–17], which can 
trigger unnecessary interventions such as surgery as well as patient 
stress. Therefore, clinically stable patients should preferably receive 
follow-up with the lowest frequency acknowledged acceptable in their 
recommended interval range (Delphi: consensus [84.6 %]) with a full 
brain tumour imaging protocol [8].

A CT scan remains a crucial step in RT planning for two reasons; 
firstly, the images provide the geometric gold standard that the more 
distorted MRI images can be co-registered to and secondly it provides 
the electron density information necessary for dose planning. No specific 
technical prerequisites apply towards lower grade diffuse gliomas, and 
standard protocols can be found elsewhere [18]. However, at crani-
otomy metal clips are often used for skull plate fixation, and the use of 

metal-artifact suppression acquisition techniques is recommended to 
optimize the accuracy of Hounsfield (HU) calculations.

Radiolabelled amino acids are of particular interest for glioma im-
aging using PET as their increased uptake in neoplastic tissue but low 
uptake in the normal brain parenchyma results in an improved tumour- 
to-brain contrast [18]. Most frequently used amino acid tracers are 
[11C‑methyl]-L‑methionine (MET), O‑(2‑[18F]‑fluoroethyl)-L‑tyrosine 
(FET), and 3,4‑dihydroxy‑6‑[18F]‑fluoro-L‑phenylalanine (FDOPA). 
Radiolabelled amino acids exhibit a sensitivity of more than 90 % for 
glioma, however only around 70 % of lower grade diffuse gliomas 

Table 2 
Trials investigating radiotherapy dose and timing in grade 2 and 3 diffuse glioma.

Trial name Inclusion Astro Oligo “Oligo 
astro”

Randomisation Radiotherapy Conclusions

2 3 2 3 2 3

Early vs late
EORTC 22,845 [38] 1986–1997 x  x  x  RT vs observation 28*1.8 Gy No OS benefit (7.4 vs 7.2y) but PFS benefit (5.3 vs 3.4y) 

for early RT
Alliance N0577 

(CODEL) [86]
2009–2011    x   RT vs RT + TMZ vs 

TMZ
33*1.8 Gy PFS worse in TMZ 

only arm (5y PFS 56 % vs 33 %). Study design changed to 
RT + PCV vs RT + TMZ

EORTC 22,033 [47] 2005–2010 x      RT vs TMZ 28*1.8 Gy No difference in PFS (3.8 vs 3.3y)
Dose escalation
EORTC22844 [44] 1985–1991 x  x  x  RT vs dose-escalated 

RT
25*1.8 Gy vs 
33*1.8 Gy

No OS benefit (5y OS 58 % vs 59 %) or PFS benefit (5y PFS 
47 % 
vs 50 %) for high dose RT

Intergroup [73] 1986–1994 x  x  x  RT vs dose-escalated 
RT

28*1.8 Gy vs 
36*1.8 Gy

No OS benefit (15y OS 22 % vs 25 %) or PFS benefit (15y 
PFS 15 % vs 10 %) for high dose RT

Table 3 
Overview of target volume definitions from published trials (

Trial name Procedure Target ICRU 
definition

Grade 2
EORTC 22,844 

[44]
 CT enhancing lesion +

20 mm 
CT edema + 10 mm

Target 
volume

ICRU29

EORTC 22,845 
[38]

 MRI T2 abnormalities 
+ 20 mm

Target 
volume

ICRU29

RTOG 9802 
[83]

 MRI T2 abnormalities 
+ 20 mm

Field 
edge

ICRU29

Intergroup 
[73]

 Lesion on CT or MRI +
20 mm

Target 
volume

ICRU29

EORTC 22,033 
[47]

 MRI T1 enhancement 
and 
T2 abnormalities + 15 
mm

CTV ICRU50

RTOG 0424 
[84]

 MRI T2 abnormalities 
+ 15 mm

CTV ICRU50

Grade 3
RTOG 9402 

[76]
 MRI T2 abnormalities 

+ 20 mm to 50.4 Gy 
MRI T1 enhancement 
+ 10 mm to 59.4 Gy

Target 
volume

ICRU29

EORTC 26,951 
[77]

 CT edema OR MRI T2 
abnormalities + 25 
mm to 45 Gy 
CT enhancing lesion 
OR MRI T1 
enhancement to 59.4 
Gy

PTV ICRU50

EORTC 26,053 
(CATNON) 
[75]

 MRI T2 abnormalities 
+ 15 – 20 mm

CTV ICRU50

NOA04 [78]  MRI abnormalities +
20 mm

CTV ICRU50

Alliance N0577 
[86]

 MRI T2 abnormalities 
+ 10 mm to 50.4 Gy* 
MRI T2 abnormalities 
+ 0 mm to 59.4 Gy*

CTV ICRU50

adapted from [40]).
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exhibit increased uptake [19–22]. Thus, 20–30 % of these gliomas are 
amino acid PET negative (i.e., no increased uptake compared to the 
reference region). Of note, a subgroup of patients with lesions without 
amino acid uptake on PET and MRI findings suspicious for low grade 
gliomas (i.e., hyperintense T2/FLAIR signal without contrast enhance-
ment) may even show photopenic defects (i.e., uptake visually lower 
than the reference region) and harbour high grade gliomas [23,24]. 
Conventional MRI is limited in its ability to differentiate between 
oedema, ischaemia, inflammation, and non-enhancing gliomas. For PET, 
several studies have correlated histology obtained from tissue specimens 
with amino acid uptake and provide evidence that amino acid PET de-
tects the most malignant tumour parts more reliably than conventional 
MRI [25–30] Therefore, amino acid PET appears highly valuable for 

target delineation. A more recent publication by the Response Assess-
ment in Neuro-Oncology Working Group for PET (PET/RANO), sum-
marizes the data and concluded that in glioma patients (including non- 
enhancing gliomas) amino acid PET may improve the delineation of 
radiotherapy target volumes beyond conventional MRI and identify 
additional tumour parts that should be targeted by radiotherapy [31]. 
According to current guidelines for glioma imaging using amino acid 
PET, the threshold for FET uptake for the delineation of tumour extent is 
defined as a mean tumour-to-brain ratio of 1.6 [32].

Radiotherapy volumes

Almost all patients with grade 2 and 3 diffuse glioma will at some 
time point undergo disease progression, typically in close proximity to 
the resection cavity following surgery [33–35]. More than 80 % of pa-
tients with grade 2 tumours exhibit treatment failure within the original 
RT fields [36–41]. Data on grade 3 tumours is limited, but the available 
evidence suggests higher rates of marginal and out-field failure [42,43]. 
There has been gradual reduction of field size over the last three decades 
prompted by; a) the pattern of mainly in-field recurrences, b) ongoing 
improvements in imaging, RT planning and dose delivery, and c) the 
longer overall survival increases concerns about late side effects of 
radiotherapy resulting from large treatment volumes. For grade 2 gli-
oma, the landmark trials of the 1990′s and 2000′s typically adopted 
margin concepts that would amount to a CTV margin of 15 to 20 mm 
[38,39,44,45] around the resection cavity and any residual lesion on 
imaging. Later trials recommended a CTV margin to 15 mm in all pa-
tients [46,47], and current ongoing trials prescribe a CTV margin of 10 
mm (NRG BN005, Alliance N0557) or below (EORTC 1635)(Table 3) For 
grade 3 glioma the early studies used a similar or slightly larger margins, 
with an additional boost phase [48,49]. Currently most trials use a CTV 
margin of around 15 mm in a single-phase technique [50,51] Fig. 1. The 
PTV should take into account all possible geometric uncertainties of 
treatment delivery as well as measurements of each institute. For 
intracranial treatments, the use of a mask system and daily online image 
guidance with cone beam CT typically reduces both systematic and 
random errors to 1.5 mm or lower[52]. The working party agreed on the 
following target delineation guidance, considering published recurrence 
data and distances (Table 4).

Table 4 
Overview of published series in grade 2 and 3 diffuse glioma with pattern of 
failure data (

Margin Number of 
recurrences

In 
field

Field 
edge

Out of 
field

Grade 2
Pu, 1994 [36] 10 – 30 mm to 

target volume
11 100 

%
0 % 0 %

Rudoler, 1998 
[37]

20 mm to 
target volume

16 100 
%

0 % 0 %

van den Bent, 
2005 [38]

20 mm to 
target volume

94 90 % 5 % 4 %

Shaw, 2002 
[39]

20 mm to 
target volume

65 92 % 3 % 5 %

Kamran, 2019 
[40]

7–15 mm to 
CTV

41 76 % 12 % 12 %

Jaspers, 2021 
[41]

10 – 15 mm to 
CTV

39 92 % 0 % 8 %

Grade 3
Im, 2018 [43] 15–20 mm to 

CTV
31 61 % 19 % 16 %

Back, 2020 
[42]

10 mm to CTV 68 51 % 9 % 22 %

* Proton therapy series, WHO grade 1 and 2 glioma.
** The data shown pertains to isolated local, marginal, and distant relapses. In 
the remaining 12 (18%) patients recurrence was classified as a combination of 
local, marginal and distant failure.
adapted from [40]).

Table 5 
Results of modified Delphi.

Question Topic Answer Level of agreement 
(%)

Imaging MRI 3 Tesla MRI is desired clinical standard 92.9
 Pseudo- 

progression
clinically stable patients should receive follow-up with the lowest frequency acknowledged acceptable 84.6

RT volumes GTV ¡ general GTV should include resection cavity and any residual tumour volume after surgery. 100
  Amino-acid PET and perfusion/diffusion advanced MRI can be good tools to improve the differentiation 

between oedema and tumour
92.9

 GTV – grade 2 T2/FLAIR abnormalities that are thought to represent tumour should be included in the GTV 100
 GTV – grade 3 T2/FLAIR abnormalities could either be tumour or oedema, but areas which are thought to represent oedema 

do not need to be included in the GTV
85.7

 CTV – grade 2 CTV should be created with an expansion of the GTV with a margin of 10 mm 90.9
 CTV – grade 3 CTV should be created with an expansion of the GTV 15 mm 91.7
 CTV ¡ general CTV margin should be edited to respect anatomical boundaries unless tumour invasion is explicitly suspected 100
 Hippocampal 

sparing
If uni- or bilateral hippocampal sparing is used, the original constraint (D40% of bilateral hippocampus < 7.3 
Gy) is recommended

91.7

RT techniques Planning IMRT and VMAT are preferred approach due to the improved target conformity with associated better sparing 
of OARs

100

 Set-up control Daily image guidance, including MV and KV cone beam CT and orthogonal X-ray imaging systems, is 
recommended

100

 Brachytherapy application of interstitial brachytherapy adds to the treatment portfolio if used in experienced hands and 
selected cases

50

Dose, 
fractionation

 50.4 Gy in 28 fractions is recommended 100

  54 Gy in 30 fractions as also used in several trials including the RTOG 9802, is also acceptable 83.3
  A lower dose level such as 45 Gy in 25 fractions, is advised against 100
  60 Gy in 30 fractions should not be exceeded in WHO grade 3 tumours 100
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GTV 

• The GTV should include the resection cavity and any residual tumour 
volume after surgery (resection or biopsy). The same target delin-
eation should be used for 1p/19q codeleted and non-codeleted gli-
oma Enhancing lesions on T1 imaging should be included if they are 
indicative of residual tumour (Delphi: strong consensus [100 %]).

• In grade 2 tumours, T2/FLAIR abnormalities that are thought to 
represent tumour should be included in the GTV (Delphi: strong 
consensus [100 %]).

• In grade 3 tumours, T2/FLAIR abnormalities could either be tumour 
or oedema, but areas which are thought to represent oedema do not 
need to be included in the GTV (Delphi: strong consensus [85.7 %]).

• The delineation of the GTV can be informed by additional MRI and/ 
or functional imaging. If available, amino acid PET and perfusion/ 
diffusion MRI can be valuable tools to improve the differentiation 
between oedema and tumour (Delphi: strong consensus [92.9 %]).

CTV 

• The CTV should be created with an expansion of the GTV with a 
margin of 10 mm for grade 2 tumours (Delphi: strong consensus 
[90.9 %]). and 15 mm for grade 3 tumours (Delphi: strong consensus 
[91.7 %]).

• The CTV margin should then be edited to respect anatomical 
boundaries, including the calvarium, tentorium, falx, and ventricles, 
and to exclude the optic nerves, chiasm, and pituitary gland (unless 

tumour invasion is explicitly suspected) (Delphi: strong consensus 
[100 %]).

• The CTV should not be edited for areas where tumour spread is 
possible, such as hippocampus or corpus callosum.

PTV
• PTV is created using a margin of ≤ 3 mm depending on depart-

mental set up policy.

Organs at risk

For organ-at-risk (OAR) delineation, the EPTN atlas contains defi-
nitions for the organs-at-risk used in CNS radiotherapy [53,54].The atlas 
was developed for use in both photon and proton radiotherapy, its use is 
recommended in trials or multi-centre protocols. In photon radiotherapy 
the Intergroup atlas can be used as an alternative [55]. Preferably, all 
individual organs at risk should be contoured. Both atlases, as well as the 
ESTRO-EANO glioblastoma guideline, include OAR dose constraint 
guidance [4,56]. In addition to dose constraints, NTCP models can be 
used for both the purpose of patient selection and radiotherapy planning 
[57,58].

Although there is substantial interest in factors linked to late-onset 
neurocognitive decline in patients with grade 2 and 3 diffuse gliomas, 
demonstration of a direct relationship between RT dose parameters and 
cognitive outcome has so far been unsuccessful. The complex interplay 
between tumour location, baseline neurological functioning, along with 
the type and frequency of neurocognitive testing, make assessment of 
impact of RT dose for an individual patent challenging. The strongest 

Fig. 1. Delineation of IDH-mutant lower grade glioma. GTV is in red, CTV in orange, PTV in blue. Top row: grade 2, CTV margin 10 mm, PTV margin 3 mm. Bottom 
row: grade 3, CTV margin 15 mm, PTV margin 3 mm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
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evidence exists for hippocampal avoidance, which has gained adoption 
in radiotherapy following the publication of RTOG 0933 [59]. If uni- or 
bilateral hippocampal sparing is used, the original constraint (D40% of 
bilateral hippocampus <7.3 Gy) is recommended (Delphi: strong 
consensus [91.7 %]). The mean dose to brain minus GTV (brain-GTV) 
can be considered as a planning objective and used to quickly compare 
plans with regards to dose in macroscopically uninvolved areas of the 
brain.

Radiotherapy techniques and dose-prescription

In view of the long survival of patients with IDH-mutant diffuse 
gliomas, it is important to keep doses to organs at risk and healthy 
normal brain as low as possible. Though no randomized trials have 
compared available radiation techniques, IMRT and VMAT are the 
preferred approach over 3D conformal RT due to the improved target 
conformity with associated better sparing of OARs (Delphi: strong 
consensus [100 %]). Daily image guidance, including MV and KV cone 
beam CT and orthogonal X-ray imaging systems, is recommended to 
enable set up margins to be minimised (Delphi: strong consensus [100 
%]).

The physical characteristics of the proton beam offers the potential to 
reduce the volume of brain receiving low doses of radiotherapy. Also, 
intensity modulation of proton beams is now available, providing su-
perior dose distributions in complex shaped target volumes when 
compared to older proton therapy techniques. The use of proton beam 
therapy may be particularly relevant in patients at young age with tu-
mours that convey a favourable prognosis, such as IDH-mutant grade 2 
diffuse gliomas. However, some reports suggest an increased rate of 
contrast-enhancing changes or pseudo-progression following proton 
radiotherapy, particularly when RT was combined with chemotherapy 
[60,61]. In contrast, a German and a Swedish study did not find an 
increased risk of pseudo-progression after proton beam therapy when 
compared to photon therapy data [62,63]. In proton therapy, global 
health as a domain of QoL has remained stable and similar to the 
normative reference [64]. Currently, there are no published randomised 
trials in adults, but the NRGBN005, NOA GLioProPh, and UK 
APPROACH trials are currently recruiting patients with IDH-mutant 
gliomas randomising them between photon-based IMRT or protons, with 
change in cognition as the primary endpoint. The results of these and 
other trials in set up phase will help decision making in future, though 
the potential reduction in late morbidity with protons will require many 
years to be fully evaluated.

Brachytherapy involves the use of radioactive isotopes to deliver 
ionizing radiation directly to the tumour offering an accurate dose dis-
tribution with steep dose gradient between tumour and normal tissue. It 
has a longstanding tradition being used since 1960 (192Ir wires) and 
1979 (125I seeds) [65,66]. Its use has been suggested as a treatment 
option for patients with newly diagnosed non-resectable, small (≤ 4 cm), 
and circumscribed IDH-mutant grade 2 diffuse glioma in non-critical 
locations [67–71]. Temporary implants are typically preferred because 
of reduced risk of long-term toxicity compared to permanent implants 
[72]. The application of interstitial brachytherapy adds to the treatment 
portfolio if used in experienced hands and in selected cases (Delphi: no 
consensus [50 %]).

Dose, fractionation, toxicity

Tumour grade is still utilized for the choice of prescription dose, 
primarily because grade 2 and grade 3 diffuse glioma were treated 
within different trials.

In grade 2 tumours, several clinical trials have failed to show a clear 
dose response relationship [44,73]. Therefore, 50.4 Gy in 28 fractions, 
as used in the EORTC 22033 trial [47], is recommended (Delphi: strong 
consensus [100 %]). As 54 Gy in 30 fractions was used in several trials 
including the RTOG 9802, the committee agreed that this dose level is 

also acceptable [74] (Delphi: consensus [83.3 %]). A lower dose level 
such as 45 Gy in 25 fractions, used by some practitioners in the treat-
ment of large tumours, is advised against (Delphi: strong consensus 
[100 %]) as the historical trials that investigated this dose followed 
prescription conventions (ICRU 29) that would result in a biologically 
lower dose today.

In grade 3 tumours, 59.4 Gy in 33 fractions has been frequently used 
in trials. This is considered the standard for grade 3 1p/19q non- 
codeleted tumours [75]. This fractionation was also used in two clin-
ical trials of grade 3 oligodendroglioma [76,77] but there are no rand-
omised trials comparing different dose and fractionation schedules in 
this group of patients. The committee discussed the potential to reduce 
this dose level to minimize late effects, especially since patients with 
grade 3 1p/19q codeleted tumours have a better long-term survival. 
Alternative fractionation schedules, such as 56 Gy in 28 fractions, 
54–57.6 Gy in 30–32 fractions, or simultaneous integrated boost (SIB) 
giving 54 Gy to non-enhancing and 60 Gy to enhancing disease in 30 
fractions, could be used at the discretion of the treating physician. 
Historically, 60 Gy in 30 fractions was used in several high-grade glioma 
trials that included both grade 3 and grade 4 tumours (IDH wildtype and 
IDH-mutant). This dose should not be exceeded in grade 3 tumours [78]
(Delphi: strong consensus [100 %]).

Discussion and future developments

Historically, trials investigating survival endpoints in lower grade 
diffuse glioma have taken ten years or more from trial initiation to yield 
clinically meaningful results. As such, basic concepts concerning target 
delineation and treatment dose have remained largely stable over the 
last decades. Use of response criteria such as those proposed by the 
Response Assessment in Neuro-Oncology group may allow for a faster 
introduction of new treatments into the clinic [13].

The number of imaging techniques, both from MRI and functional 
imaging, available for target delineation and response assessment is 
increasing and are likely to grow in importance in the coming years. As 
such, the complexity of target delineation may increase, and so will the 
added value of artificial intelligence assisted decision making. The 
successful application of targeted radionuclide therapy towards the 
treatment of extracranial tumours (such as neuroendocrine tumours and 
prostate cancer) has prompted efforts to translate this approach to 
neuro-oncology [79]. By exchanging the radionuclide, the same PET 
tracer can be used either for diagnostic purposes or therapy. For 
example, exchanging the positron emitter 68Ga or 18F used in diagnostics 
with a β− -emitter such as 177Lu allows for targeted radionuclide therapy. 
A few clinical applications of targeted radionuclide therapy in glioma 
patients have passed the preclinical stage and are currently evaluated in 
clinical trials [80]. The outcomes of trials investigating survival, quality 
of life and neurocognitive function after proton beam therapy will 
determine its place in the radio therapeutic arsenal towards lower grade 
diffuse gliomas. In the future, ultra-high dose rate, or FLASH, radio-
therapy may emerge as a treatment option. In high grade glioma, pre-
clinical data suggests an opportunity for improving neurocognitive 
outcomes without compromising tumour control [81].

This guideline did not address the question of the optimal treatment 
sequence. The introduction of new systemic treatments may alter the 
timing of adjuvant radiotherapy after resection. For example, vor-
asidenib, an IDH1/2 inhibitor currently pending license approval, has 
been shown in a phase III trial to increase progression free survival in 
patients with grade 2 IDH-mutant diffuse glioma, which may delay the 
use of radiotherapy in patients [82]. Lastly, the increasing knowledge of 
biological markers has not yet been integrated into larger trials inves-
tigating dose and fractionation. The question whether the current dose 
levels are still necessary for good prognostic subgroups (like grade 3 
IDH-mutant and 1p/19q codeleted tumours) therefore remains to be 
answered, and as such, it was felt that an allowance towards a dose 
reduction in such patients could be made in this guideline.
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Conclusions and recommendations

This guideline provides recommendations for radiotherapy in IDH-
mutant grade 2 and 3 diffuse glioma. Delineation should be informed by 
at least a directly acquired postoperative MRI. For grade 2 tumours, a 10 
mm CTV margin and a dose of 50.4 Gy in 28 fractions is recommended. 
For grade 3 tumours, a 15 mm CTV and a dose of 59.4 Gy in 33 fractions 
is recommended. The guideline provides recommendations on OAR 
contouring, treatment planning, and discusses alternative methods of 
radiotherapy dose delivery.
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