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This document has been developed to provide a guide for basic and advanced reporting in paediatric echocardiography. Furthermore, it aims to help 
clinicians in the interpretation of echocardiographic measurements and functional data for estimating the severity of disease in different paediatric 
age groups. The following topics will be reviewed and discussed in the present document: (i) the general principle in constructing a paediatric echo
cardiographic report, (ii) the basic elements to be included, and (iii) the potential and limitation of currently employed tools used for disease severity 
quantification during paediatric reporting. A guide for the interpretation of Z-scores will be provided. Use and interpretation of parameters em
ployed for quantification of ventricular systolic function will be discussed. Difficulties in the adoption of adult parameters for the study of diastolic 
function and valve defects at different ages and pressure and loading conditions will be outlined, with pitfalls for the assessment listed. A guide for 
careful use of prediction scores for complex congenital heart disease will be provided. Examples of basic and advanced (disease-specific) formats for 
reporting in paediatric echocardiography will be provided. This document should serve as a comprehensive guide to (i) structure a comprehensive 
paediatric echocardiographic report; (ii) identify the basic morphological details, measures, and functional parameters to be included during echo
cardiographic reporting; and (iii) correctly interpret measurements and functional data for estimating disease severity.
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Introduction
Guidelines and standards for paediatric echocardiography have been 
well published over the past decade,1–12 including recommendations 
for a standard protocol,1 quantification,7 structured reporting,2,4 and 
training.5 These documents2,4,5,7 address the role of echocardiography 
in different conditions, from normal to different pathological states. 
Recommendations for the content of structured reporting systems 
have also been published,2,13,14 yet no established standard reporting 
formats are available to facilitate the following objectives: (i) to pro
mote standardized care, (ii) to avoid inadvertent exclusion of potential
ly relevant information, (iii) to distinguish among essential and optional 
elements, and (iv) to optimize time use.13,14

Despite the availability of recommendations7 for quantification 
methods during the performance of a paediatric echocardiogram and 
international nomenclature for congenital heart disease (CHD),14–17

estimation of disease severity often remains a challenge. The use of 
Z-scores18–28 has been accepted for two-dimensional (2D) measures, 
and robust normal value sources are currently available.18–21 Which 
of the available Z-score sources should be adopted remains however 
unclear.18–21 Even the evaluation of ventricular sizes in children29–38

is not so standardized as in adults.33 The greatest difficulties however 
are encountered for the quantification of functional data. Many aspects 
of Doppler18,27,28 and colour Doppler flow evaluation39–46 in the paedi
atric age group have not yet been completely defined. Significant uncer
tainty exists in the evaluation of diastolic function, as patterns of altered 
diastolic function at different ages, and in different loading and pressure 
conditions, have been poorly defined.47–63 Similarly, quantification of 
valvular defect severity furthermore may be troublesome since the 
adult parameters to estimate valvular defects29,45,46 have not been 
completely validated in the paediatric cohort.64–96 Also, despite septal 
defects being very common in the children, echocardiographic para
meters to grade shunt size are not completely defined.39–46 The intro
duction of new three-dimensional (3D)29,31,32 and speckle tracking 
echocardiography (STE) modalities97–108 poses new challenges in inter
pretation of results. Lastly, there is a series of echocardiographic para
meters and prediction scores for biventricular risk estimation in 
complex CHD,109–128 which remain contentious. Other scores have 
also been poorly applied so far [such as those for prediction of aortic 
coarctation (CoA)].129–134

The aims of this manuscript are: 

(i) To evaluate the strengths and limitations of published recommenda
tions for reporting paediatric echocardiography with CHD

(ii) To discuss which elements should be required, rather than optional, 
in a standard report

(iii) To propose a uniform standard for reporting in paediatric 
echocardiography

(iv) To review the potential and limitation of tools currently employed for 
disease severity quantification during paediatric reporting, including 
Z-scores; parameters for classifying ventricular systolic and diastolic 
function, valvular defects, and shunt lesions; and which scores should 
be used for complex CHD

This document has been written by the members of the Imaging 
Working Group of the Association for European Paediatric and 
Congenital Cardiology and by the members of the Grown-Up 
Congenital Heart Disease Taskforce of the European Association of 
Cardiovascular Imaging of the European Society of Cardiology (ESC). 
The document follows criteria for the expert consensus paper of the 
ESC.135 Categories indicated in the ESC Clinical Consensus 
Statement have been used for clinical advice.136

General principles in the building of 
a report
The construction of a structured report requires consistency with 
regard to (i) a standardized protocol of imaging acquisition with a fixed 
order of items to be followed, (ii) essential elements to be included, 
(iii) availability of a solid nomenclature of definitions, and (iv) classifica
tion of CHD and grading of their severity.2 The report should be flexible 
(with the possibility to add or subtract elements and free text spaces), 
complete, concise, reproducible (for different settings, diseases, and op
erators’ skill), practical, capable of evolving over time, and applicable be
tween different electronic medical record systems4,5 (Table 1).

Consistency
The order to be followed and essential elements to be 
included: the segmental approach
The segmental approach is recognized as the gold standard in evalu
ation of CHD.1,4–6 This detailed anatomical and functional analysis, in
cluding the views and the required projections and their sequential 
order, and the essential elements to evaluate have been well defined 
by standardized review.1,4,7–12

The use of a common nomenclature
Over the years, various consensus papers15–17 have tried to establish an 
international system for classification and coding of different CHD, as 
well as of their surgical/interventional treatment. Paediatric echocardio
graphic systems to grade the severity of many congenital and acquired 
defects however remain limited yet.1–4,7–12

Clinical Advice:

Table 1 Principles of structured, balance, and practical 
reporting

Consistency There should be an organized structure, fixed 
elements, and defined terminology

Flexibility Addition of elements and free text should be allowed

Completeness Allow inclusion of all potentially relevant information

Conciseness Easy to understand, fast to read

Reproducibility Adequate for various settings, diseases, and operator’s 
skill

Practical Easy to apply, pertinent to daily issues

Able to evolve  
over time

Compatible with evolution in knowledge, advances of 
new techniques

Digital and 
compatible

Allow interoperability between electronic medical 
record systems

2                                                                                                                                                                                            M. Cantinotti et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjcim
aging/advance-article/doi/10.1093/ehjci/jeae147/7687697 by guest on 24 June 2024



Gap in knowledge: 

• System and code for CHD should be uniformed.

• Systems to classify disease severity need to be implemented.

Flexibility
A single report for all CHD or a report for every single 
CHD?
Due to the large variety of congenital and acquired cardiac lesions pre
senting in the paediatric age group, reports will vary extensively for dif
ferent defects.5 Whether a unique, flexible report for all cardiac lesions 
or single reports for specific lesions should be employed is debatable. 
The use of a single format for all cardiac lesions requires flexibility, par
ticularly in terms of adding or removing elements.3 Thus, in a basic for
mat, various elements can be added, whereas in a very complex format, 
unneeded information can be removed. Examples of basic and com
plete formats for reporting are provided in Tables 2–5 and 
Supplementary data online, Table S1. The use of separate formats for 
various cardiac lesions would require the availability of multiple formats, 
due to the great variety of CHDs. The use of multiple formats may be 
helpful for standardization in reporting and serve as a guide for the clin
ician, especially younger trainees, in the diagnosis of complex CHDs. 
The CHD-specific format should indicate all the relevant details that 
are required for a specific cardiac lesion. The major issue related to 
multiple formats is represented by complex and rare CHDs and by 
the presence of associated CHD.1–12 Thus, even lesion-specific formats 
may prove inadequate for the complete evaluation of difficult anatomy; 
therefore, flexibility is required. As for single formats, in complex 
CHD-specific formats, unnecessary information, or data that has not 
been acquired for technical reasons, may need to be removed. It is im
portant to note that not all the measurements are required at each 
examination.7

In Supplementary data online, Tables S2–S13, reporting formats for 
major groups of CHDs before and after surgical and/or percutaneous 
correction/palliation are presented. It starts from simple defects such 
as left-to-right shunt [septal defects and patent arterial duct (PDA)] 
(see Supplementary data online, Tables S2–S4] to a more complex 
CHD [e.g. atrioventricular septal defects (AVSD), transposition of 
the great arteries, anomalous pulmonary venous return, and cono- 
truncal defects; see Supplementary data online, Tables S5–S11). 
Complex univentricular CHDs before (see Supplementary data 
online, Table S12) and after (see Supplementary data online, 
Table S13) different stages of Fontan palliation have also been pre
sented. Lastly, examples of rare CHDs such as congenital mitral sten
osis and aorto-pulmonary are provided (see Supplementary data 
online, Table S14).

Clinical Advice:

Gap in knowledge:
An analysis of the advantages and limitations in different methods of 

reporting has not yet been performed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Example of basic 2D and Doppler assessment 
format for reporting a normal paediatric 
echocardiographic examination

Patient name: 
Date of birth (DOB): 
Date of examination: 
Age (years/months): 
Weight (kg):  Length (cm):  BSA (m2): 
Arterial pressure (mm Hg):  HR: b.p.m. 
Oxygen saturation: %  Rhythm: 
Department:  Operator:

Situs: Solitus

Position within the chest: Levocardia

AV connection Concordant

Ventriculo-arterial 

connection:

Concordant

Pulmonary venous 

return:

Normal

Systemic venous return Normal

Inter-atrial septum Intact

Interventricular septum Intact

Cardiac chambers

RA Normal dimensions

LA Normal dimensions

LV Normal dimensions, volumes, and thickness. 

Normal systolic and diastolic functions

RV Normal dimensions, volumes, and thickness. 

Normal systolic and diastolic functions

Valves

TV Physiologic insufficiency 

RV–RA difference of pressure: mm Hg

MV Normal anatomy, no insufficiency, no stenosis

Aortic valve Normal anatomy, no insufficiency, no stenosis 

Aortic sinuses and ascending aorta of normal 

dimensions

Pulmonary valve Normal anatomy, physiologic insufficiency, no 

stenosis

Great vessels

Main pulmonary artery Normal dimension

Right pulmonary artery: Normal dimension

Left pulmonary artery: Normal dimension

Aortic arch Normal anatomy and normal vessels take-off

Arterial duct/collaterals Absent

Coronary arteries Normal origin and dimension

Pericardium No effusion

Others

Quality of the 
examination

Conclusions No evidence of structural and functional heart 
disease. Findings within the range of 

normality for the age

Signature:

BSA, body surface area; b.p.m., beats for minute.
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Table 3 A complete 2D and Doppler assessment format for reporting in paediatric echocardiography with basic 
anatomical and functional detail, basic and advanced measurements, and functional parameters

Patient name 
Date of birth: 
Date of examination: 
Age (years/months): 
Weight (kg):  Length (cm):  BSA (m2): 
Arterial pressure (mm Hg):  HR: b.p.m. 
Oxygen saturation: %  Rhythm: 
Department:  Operator: 
Echo machine:  Software employed for 3D, strain analysis:

Basic anatomical/functional detail Basic measures/functional 
parameters

Advanced measures/functional 
parameters

Situs: Solitus: 
Ambiguus: 

Inversus:

Position within the chest: Levocardia: 

Mesocardia: 
Dextrocardia:

AV connection Concordant: 
Discordant: 

Position of the aorta: 

Position of the PA:

Ventriculo-arterial 

connection:

Concordant: 

Discordant:

Pulmonary venous return: Normal: 

Abnormal: 
Right veins: 

Left veins:

Systemic venous return Normal: 

Abnormal: 

IVC: 
SVC: 

LSVC:

Inter-atrial septum Bulging: 

Size of the shunt: 

Direction of the shunt:

Interventricular septum Bulging: 

Size of the shunt: 
Direction of the shunt:

Cardiac chamber

RA Dimensions: Volume Longitudinal strain 

3D volumes

LA Dimensions: Volume Longitudinal strain 

3D volumes

LV Dimensions: 
Wall thickness: 

Systolic function: 

Diastolic function:

M-mode: 
Biplane volumes

Strain: global, septal, lateral 
3D: volumes, EF, SV

RV Dimensions: 

Wall thickness: 
Systolic function

2D measures 

Functional indices

Strain: global, septal, lateral 

3D: volumes, EF, SV

Continued 
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Table 3 Continued  

Patient name 
Date of birth: 
Date of examination: 
Age (years/months): 
Weight (kg):  Length (cm):  BSA (m2): 
Arterial pressure (mm Hg):  HR: b.p.m. 
Oxygen saturation: %  Rhythm: 
Department:  Operator: 
Echo machine:  Software employed for 3D, strain analysis:

Basic anatomical/functional detail Basic measures/functional 
parameters

Advanced measures/functional 
parameters

Valves

TV Anatomy: 

Regurgitation: none, trivial, mild, moderate, 

severe 
Stenosis: none, mild, moderate, severe

RV–RA pressure difference 

Annulus diameter 

Regurgitant parameter 
Stenotic parameters 

Power Doppler data

Tissue Doppler data 

Regurgitant parameters

MV Anatomy: 

Regurgitation: none, mild, moderate, severe 

Stenosis: none, trivial, mild, moderate, severe

RV–RA pressure difference 

Annulus diameter 

Regurgitant parameter 
Stenotic parameters 

Power Doppler data

Tissue Doppler data 

Pulmonary vein assessment

Aortic valve Anatomy: 

Regurgitation: none, trivial, mild, moderate, 

severe 
Stenosis: none, mild, moderate, severe 

Aortic root and ascending aorta:

Max velocity, max and mean gradient 

Diameters: annulus, root, junction, 

Asc Ao, Sub-Ao 
Regurgitation parameters: 

Stenosis parameters:

Pulmonary valve Anatomy: 

Regurgitation: none, trivial, mild, moderate, 

severe 
Stenosis: none, mild, moderate, severe

Max velocity, max and mean gradient 

Annulus diameter 

Regurgitation parameters: 
Stenosis parameters:

Great vessels

Main pulmonary artery Max velocity, max and mean gradient 

Diameter

Right pulmonary artery: Max velocity, max and mean gradient 

Diameter

Left pulmonary artery: Max velocity, max and mean gradient 

Diameter

Aortic arch Sidedness Functional parameters 

Max velocity, max and mean gradient 
Run-off: 

Retrograde flow: 

Diameters at different points

Arterial duct/collaterals

Coronary arteries Origin: Diameters

Pericardium/pleura Effusion/others Systolic and diastolic diameters

Abdominal aorta Flow pattern: normal, demodulated, retrograde, 
vasoconstriction patterna

Max velocity, acceleration, and 
deceleration time

Inferior vena cava/hepatic 
veins

Excursion 
Congestion: 

Reversal flow:

Systolic and diastolic diameters

Continued 
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Completeness and conciseness
A report should be complete (including all relevant information) and, 
ideally, concise (fast to read). For each CHD, it is important to outline 
the essential anatomical details, measures, and functional parameters to 
be reported. Supplementary data online, Table S15, has been provided a 
checklist of all essential data to be included in the reporting of major 
CHDs.

When, what, and how to quantify?
Studies have shown the benefit of quantitative over qualitative evalu
ation of cardiac defects4–6 given the significant inter- and intra-observer 
variability of qualitative assessments, which may lead to misleading in
terpretation of results.4–6 What and when to quantify, however, has 
not yet been completely defined. Latest updates of the Intersocietal 
Accreditation Commission5 suggest that numerical data for paediatric 
transthoracic echocardiograms should include (but not be limited to) 
measurements of left ventricle (LV) diameters or volumes, LV wall 
thickness, ejection fraction (EF), and aortic root dimensions.5 A quanti
tative measurement of the LV has been also advised during the per
formance of a targeted echocardiography in the neonatal intensive 
care unit.8,12 Whether a basic quantitative evaluation of some cardiac 
structures should be applied to all subjects (including screening out
patient visit), or only to selected cases, is unclear. Furthermore, no re
commendations/consensus of which indices should be evaluated for 
specific cardiac defects exist.

Measurements of specific cardiovascular indices may raise several 
practical issues,6–8,12 especially when dealing with neonates and infants. 
The level of sedation/cooperation, for instance, is important when per
forming echocardiographic measurements in children.6–8,12 When a 
complete examination is advised (e.g. pre-operative, clinical instability, 
etc.), one may have to adopt a lower threshold for sedating patients.6,7

Conversely, sedation may not be a good use of time and resources in 
case of a screening echocardiography.7–9

Clinical Advice:

Gap in knowledge:
The level of sedation/cooperation may alter the quality of examin

ation, and of measurements, and it’s difficult to establish when an exam
ination may be of sufficient quality.
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Table 3 Continued  

Patient name 
Date of birth: 
Date of examination: 
Age (years/months): 
Weight (kg):  Length (cm):  BSA (m2): 
Arterial pressure (mm Hg):  HR: b.p.m. 
Oxygen saturation: %  Rhythm: 
Department:  Operator: 
Echo machine:  Software employed for 3D, strain analysis:

Basic anatomical/functional detail Basic measures/functional 
parameters

Advanced measures/functional 
parameters

Others

Quality of the examination Acoustic window: poor, sufficient, good, excellent 

Patient’s collaboration: poor, sufficient, good, 

excellent 
Completeness of the examination: partial, 

sufficient, good, excellent

Conclusions

Signature:

Z-score sources:

2D, two-dimensional; 3D, three-dimensional; IVC, inferior vena cava; EF, ejection fraction; LSV, left superior vena cava; SVC, superior vena cava. 
aRapid, steep acceleration and deceleration.
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Table 4 Major parameters for quantitation in paediatric echocardiography

Basic measures/functional parameters Advanced measures/ 
functional parameters

Cardiac chambers

RA AP diameter (mm; Z-score), LL diameter (mm; Z-score), area (cm2; Z-score): 

Volume: (mL, mL/m2), EF%

LS 

3D

LA AP diameter (mm; Z-score), LL diameter (mm; Z-score), area (cm2; Z-score): 

Volume: (mL, mL/m2), EF%

LS 

3D

LV M-mode: 

LVIDd (mm; Z-score), LVIDs (mm; Z-score), IVSd (mm; Z-score), LVPWd (mm; Z-score): 

EF%: Mass (g) 
Biplane volumes, area, and length: 

LVEDV (mL, mL/m2; Z-score): 

LVESV (mL, mL/m2; Z-score): 
LVEDA (cm2; Z-score): 

LVESA (cm2; Z-score): 

LVEDL (mm; Z-score): 
LVESL (mm; Z-score): 

EF%

Strain: 

GLS (LS) % 

3D: 
LVEDV (mL, mL/m2; Z-score): 

LVESV (mL, mL/m2; Z-score): 

EF%, SV (mL, mL/m2)

RV 2D measures 

RVED area (cm2; Z-score): 

RVES area (cm2; Z-score): 
RVED length (mm; Z-score): 

RVES length (mm; Z-score): 

FAC% 
RV1 (mm; Z-score), RV2 (mm; Z-score): 

Functional indices 

TAPSE (mm), TDI lateral s′ (cm/s)

Strain: 

GLS (LS) %, septal LS, lateral LS 

3D: 
LVEDV (mL, mL/m2; Z-score): 

LVESV (mL, mL/m2; Z-score): 

EF%, SV (mL, mL/m2)

Valves

TV RV–RA difference of pressure (mm Hg): 

Annulus (mm; Z-score): 

Regurgitant parameter:  
VC (mm), PISA radius, PHT (ms) 

Stenotic parameters:  

PHT (ms), valve area (cm2), EOA (cm2)  
Max/mean grad (mm Hg):  

Inflow velocity time integral (ms), valve area (cm2) 

Power Doppler: 
E (cm/s), A (cm/s), DT (ms), IVRT (ms)

Tissue Doppler (lateral annulus) 

e′ (cm/s), a′ (cm/s), s′ (cm/s), E/e′ 

Regurgitant parameters 
EROA (cm2), 3D VC or EROA (cm2)

MV Annulus (mm; Z-score): 
Regurgitant parameters:  

VC (mm), jet area (cm2), jet length (mm), jet density, PHT (ms) 

Stenosis parameters:  
PHT (ms), MVA (cm2), EOA (cm2)  

Max/mean grad (mm Hg): 

PW Doppler  
E (cm/s), A (cm/s), DT (ms), IVRT (ms)

Tissue Doppler 
IVS: 

e′ (cm/s), a′ (cm/s), s′ (cm/s), E/e′ 

Lateral annulus: 
e′ (cm/s), a′ (cm/s), s′ (cm/s), E/e′ 

Pulmonary vein assessment  

Ar velocity (cm/s), A duration (ms), 
D (cm/s), S (cm/s)

Aortic valve V max (m/s) 
Max/mean grad (mm Hg): 

Annulus (mm; Z-score): 

Root (mm; Z-score): 
Junction (mm; Z-score): 

Asc Ao (mm; Z-score): 
Sub-Ao diameter (mm; Z-score): 

Continued 
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Table 4 Continued  

Basic measures/functional parameters Advanced measures/ 
functional parameters

Regurgitation parameters:  

VC (mm), PISA radius (mm), PHT (ms), EROA (cm2), reg vol (mL), reg %, jet diameter/LVOT, 

jet width/LVOT, retrograde flow in Dao, LVEDV Z-score, LVEDV/BSA (mL/m2) 
Stenosis parameters:  

PHT (ms), valve area (cm2), AVA (cm2), EOA (cm2)  

Max/mean grad (mm Hg):

Pulmonary valve Annulus (mm; Z-score): 

V max (m/s) 
Max/mean gradient (mm Hg): 

Regurgitation parameters: 

VC (mm), PHT (ms), jet/annulus width ratio, reversal flow in pulmonary arteries, termination 
of flow in mid–late diastole 

Stenosis parameters:  

PHT (ms)  
Max/mean grad (mm Hg):

Great vessels

Main pulmonary 

artery

Diameter (mm; Z-score): 

V max (m/s), peak/mean grad (mm Hg)

Right pulmonary 

artery

Diameter (mm; Z-score): 

V max (m/s), peak/mean grad (mm Hg)

Left pulmonary 

artery

Diameter (mm; Z-score): 

V max (m/s), peak/mean grad (mm Hg)

Aortic arch Functional parameters  

V max (m/s), peak/mean grad (mm Hg)  
Run-off:  

Reverse flow: 

Diameters 
IA-LCA (mm; Z-score): 

LCA-LSA (mm; Z-score): 

After LSA (mm; Z-score): 
Isthmus (mm; Z-score): 

Desc Ao (mm; Z-score): 

Abd Ao (mm; Z-score):

Arterial duct/ 

collaterals

Coronary arteries LCA (mm; Z-score): 

LDA (mm; Z-score): 
Cx (mm; Z-score): 

RCA (mm; Z-score):

Pericardium/pleura Max systolic diameter (mm) 

Max diastolic diameter (mm)

Abdominal aorta V max (m/s), Dec time (ms), Acc time (ms)

Inferior vena cava/ 

hepatic veins

Systolic diameter (mm), diastolic diameters (mm)

Ao, aorta; Abd Ao, abdominal aorta; Ar, peak retrograde flow velocity during atrial contraction; AP, anteroposterior; BSA, body surface area; b.p.m., beats per minute; cm/s, centimetre/ 
second; Cx, circumflex coronary artery; D, peak antegrade flow velocity during ventricular diastole; Desc Ao, descending aorta; DT, deceleration time; EF, ejection fraction; EOA, effective 
orifice area; GLS, global longitudinal strain; IA, innominate artery; IVC, inferior vena cava; IVS, interventricular septum; IVRT, isovolumetric relaxation time; IVSd, interventricular septum 
diastolic thickness; LCA, left common coronary artery; LDA, left descending coronary artery; LL, latero-lateral; LS, longitudinal strain; LSVC, left superior vena cava; LVED, left ventricular 
end-diastolic; LVES, left ventricular end systolic; LS, longitudinal strain; LVPWd, left ventricle posterior wall diastolic thickness; mm, millimetres; PHT, pressure half-time; PISA, proximal 
isovelocity surface area; RCA, right coronary artery; S, peak antegrade flow velocity during ventricular systole; SCV, superior vena cava; FAC, fractional area change from diastole to 
systole; TAPSE, tricuspid annular plane systolic excursion; PWD, power Doppler; TDI, tissue Doppler; TV s′, velocity of tricuspid annular systolic motion early diastolic velocity (e′); 
A′, late diastolic velocity.
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Table 5 Example of basic post-surgical report

Patient name 
Age (years/months):  Weight (kg):  Length (cm):  BSA (method): 
Arterial pressure (mm Hg):  HR: b.p.m.  Oxygen saturation:   Rhythm: 
Department:    Operator: 
Type of surgery:   Surgery date: 
Echo machine:  Software employed for 3D, strain analysis:

Diagnosis
Anatomy Measures/functional parameters

Pericardium: Effusion: 
Thrombi: 

Inflammation:

Effusion size max systolic (mm) 
Effusion size max diastolic (mm)

Abdominal aorta pulsatility: Normal 

Decreased

Ascending/descending times 

Reversal flow

Vena cava and hepatic veins Dimension Pulsatility 

Reversal flow

Systemic venous return Obstruction

Inter-atrial septum Residual shunt 

Shunt direction 

Septal bulging

Shunt size

Interventricular septum Residual shunt 

Shunt direction 
Septal bulging

Shunt size 

Pressure difference across the defect

Cardiac chambers

RA Volumes

LA Volumes

LV Dimensions: 
Wall thickness: 

Systolic function: 

Diastolic function:

M-mode: 
Biplane volumes

RV Dimensions: 

Wall thickness: 
Systolic function

TAPSE (mm); TDI lateral s′ (cm/s) 

FAC%

Valves

TV Anatomy: 

Regurgitation: none, trivial, mild, moderate, severe 
Stenosis: none, mild, moderate, severe

RV–RA difference of pressure (mm Hg): 

Max and mean grad (mm Hg): 
Vena contracta (mm)

MV Anatomy: 
Regurgitation: none, trivial, mild, moderate, severe 

Stenosis: none, mild, moderate, severe

Mitral inflow PW Doppler and tissue Doppler diastolic parameters  
Max and mean grad (mm Hg):  

Vena contracta (mm)

Aortic valve Anatomy: 

Regurgitation: none, trivial, mild, moderate, severe 
Stenosis: none, mild, moderate, severe

Max velocity (m/s), max/mean grad (mm Hg): 

Vena contracta (mm) 
PHT (ms)

Pulmonary valve Anatomy: 
Regurgitation: none, trivial, mild, moderate, severe 

Stenosis: none, trivial, mild, moderate, severe

Max velocity (m/s), max and mean grad (mm Hg): 
Vena contracta (mm) 

PHT (ms)

Great vessels

Main pulmonary artery Supravalvular stenosis: 
Stenosis:

Max velocity (m/s), max and mean grad (mm Hg): 
Narrowest point (mm)

Right pulmonary artery: Stenosis: Narrowest point (mm) 
Reverse flow:

Continued 

Reporting and quantification in paediatric echocardiography                                                                                                                                  9
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjcim
aging/advance-article/doi/10.1093/ehjci/jeae147/7687697 by guest on 24 June 2024



Reproducibility and practice
A report format that can be used in various settings (from the intensive 
care unit to the outpatient department) should be employed.2,4,7,8,12

A report should be practical, easy to apply, and comprehensible for 
operators and readers with different levels of experience and 
skill.2,4,7,8,12

Clinical Advice:

Ability to evolve over time
New techniques including STE, 3D,29,31,32 and blood STE97–108 are gain
ing consensus, especially in complex cardiac cases.97–106 Thus, a report
ing format should be able to evolve over time, with the inclusion of new 
parameters, new terminologies, and evolving definitions.29,31,32,106,107

Given the inter-vendor variability30 that may generate different ranges 
of normality, the inclusion of echocardiographic equipment and soft
ware employed for complex strain106,107 and 3D analysis29,31,32 needs 
to be incorporated into the report.

Clinical Advice:

Digital and compatible
Digital era: image analysis and reporting
During the last decade, there has been a progressive transition from ana
logue to digital echocardiographic laboratories.3,14,137–141 Digital report
ing is superior to traditional videotape and phone-based methods as 
recently underscored.3,14,137–141 There are several advantages to a digital 
system including review, comparison, storage, post-processing, sharing of 
studies (including in real time through telemedicine), quantitative analysis, 
and superior resolution.3,137–141 Furthermore, the creation of an auto
mated report of all the measurements may be easily accomplished, avoid
ing time-consuming manual transcription.3,137–141 Automated reports 
may provide the Z-score for each measurement and allow for compari
son with previous examinations (e.g. with superimposed previous va
lues). However, there are downsides to a digital system including the 
lack of accepted standards and legal, licensure, and billing issues.137–141

It’s important furthermore ensuring compatibility of all the echocardio
graphic machines with the network and a data management and storage 
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Table 5 Continued  

Patient name 
Age (years/months):  Weight (kg):  Length (cm):  BSA (method): 
Arterial pressure (mm Hg):  HR: b.p.m.  Oxygen saturation:   Rhythm: 
Department:    Operator: 
Type of surgery:   Surgery date: 
Echo machine:  Software employed for 3D, strain analysis:

Diagnosis
Anatomy Measures/functional parameters

Left pulmonary artery: Stenosis: Narrowest point (mm) 
Reverse flow:

Aortic arch Stenosis: Reverse flow: 
Narrowest point (mm)

Arterial duct/collaterals Presence 
Origin 

Direction

Max velocity (m/s), max and mean grad (mm Hg): 
Reverse flow: 

Narrowest point (mm)

Pleural effusion Present 

Absent

Maximal diameter

Diaphragmatic movements Normal 

Decrease 
Absent 

Paradox

M-mode of diaphragmatic excursions

Others

Quality of the examination

Conclusions

Signature:

BSA, body surface area; b.p.m., beats per minute; FAC, fractional area change from diastole to systole; grad, gradient; PHT, pressure half-time; V max, max velocity; TAPSE, tricuspid 
annular plane systolic excursion; PWD, power Doppler; TDI, tissue Doppler; RV, right ventricle; RA, right atrium.
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system (with sufficient memory, protection, and constant updating). 
Compatibility of different types of ‘DICOM’ compression and varying ap
proaches to the processing of Doppler data are other important issues 
to bear in mind.14,137–141 There are ongoing efforts to overcome these 
challenges by scientific societies and industry through the Integrating 
Healthcare Enterprise (see http://www.cocir.org).14

Clinical Advice:

Gap in knowledge:
Digital technologies need to evolve in terms of compatibility among 

different data networks. 

Basic elements of a paediatric 
echocardiographic report
Generalities
Inclusion of demographic data such as age, weight, height, and gender is 
mandatory1–12 and of heart rate (HR), blood pressure, oxygen 

saturation, and respiratory rate is strongly advised.1–12 Other elements 
including the examination’s medical indication, main diagnosis 
(if known), and previous interventions1–12 and ongoing therapy should 
be reported.

Image quality always needs to be reported.1–12 Because of the inter- 
vendor variability of the results, it is important to report the vendor and 
the software employed for analysis especially when innovative analyses 
are employed.29,31,32,97,106,107 The source of nomograms should also be 
detailed.18–28

Key elements of segmental analysis
The key elements following the segmental analysis approach should be 
reported as shown in Tables 2–6.

Conclusions section
In this section, the main diagnosis together with essential 
functional elements (e.g. the presence and the size of PDA in 
duct-dependent lesions, the presence and the size of a patent 
foramen ovale (PFO) in transposition of the great arteries, etc.) 
should be reported.1–12 The conclusion should be easy to 
interpret for all professionals independent of level of seniority, 
should attempt to answer the pertinent clinical question, and 
should allow for significant abnormal findings to be clearly commu
nicated.1–12
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Table 6 Key elements of a paediatric echocardiographic report

Anatomical details Quantitative analysis

Position of the heart and situs Should always be reported

AV and VA connection Should always be reported

Systemic and pulmonary 

venous return

Should always be reported

The presence of a defect should always be 

reported

The direction of the shunt and size of defect should be described 

LV–RV pressure difference should always be described in the presence of a 

VSD

Atria Anatomical details should always be reported Quantitation is advised in case of AV defect or significant shunt lesion

Ventricles Description of systolic and diastolic function and 

dimension of LV and RV should always be 

performed

Quantitation of ventricular size is mandatory in shunt lesions, overload of 

different nature, valvular lesions, or complex CHD with borderline ventricle 

Quantitation of ventricular systolic and diastolic function is mandatory 
when a ventricular dysfunction is suspected clinically or detached during 

echocardiography or during the follow-up of ischaemic damage of different 

nature, CM, and myocarditis

AV valves Anatomical details should always be reported Quantitation is required in case of stenosis, insufficiency, or left/right 

disproportion

Aorta and ascending aorta Anatomical details should always be reported Quantitation is required in case of stenosis, insufficiency, hypoplasia, or 

dilatation

Pulmonary arteries Anatomical details should always be reported Quantitation is required in case of stenosis/hypoplasia or dilatation

Aortic arch and main vessels Anatomical details should always be reported Quantitation is required in case of stenosis or dilatation

Pericardium Anatomical details should always be reported Quantitation is required in case of effusion

Abdominal aorta Anatomical and functional details should always 
be reported

Quantitation is required in case of systemic hypoperfusion of different nature

Inferior vena cava/hepatic 
veins

Anatomical and functional details should always 
be reported

Quantitation is required in case of congestion of various nature

AV, atrioventricular; VA, ventricular–arterial; LV, left ventricle; RV, right ventricle.
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Clinical advice:

Interpretation of quantitative data
In the following paragraphs, major issues related to the quantification 
and interpretation of echocardiographic data in the paediatric age are 
detailed. The projections and the methods for image acquisition and 
measurement performance have been extensively detailed in previous 
publications.1–12 Thus, we’ll be limited to discussing issues related to the 
interpretation of the quantitative data and the choice of the parameters 
to be used at different ages and in different conditions.

The use of Z-scores
For correct echocardiographic quantification of cardiac structures, it’s 
important to refer to age and body size–specific nomograms.18–28,47

The choice of nomogram is important, as many earlier nomograms 
had significant limitations.18–21 Furthermore, a great variability of results 
may be observed by using different Z-score sources.19,21,117

Major 2D measures
Robust nomograms are currently available for all the major 2D mea
sures (cardiac chamber dimension, area, valvular annulus, aorta, pul
monary arteries, and aortic arch diameters) covering different age, 
body size ranges, and major ethnicities. When utilizing Z-scores, it is im
portant to know their source and associated limitations.18,19,21 The use 
of different nomograms may generate discordant results; thus, multiple 
sources of Z-scores may be used to have a comparison among them, 
but during the follow-up, it’s important to compare Z-scores from 
the same source.18,19,21 Comparing current nomograms has shown 
the two most recent nomograms (Lopez et al. and Cantinotti 
et al.)20,21 have the most comparable ranges of normality with differ
ence limited within a Z-score of 0.5 (Z-score range, 0.001–1.26). 
Differences were higher at lower extremes of body surface area 
(BSA), especially for the neonatal age.20,21 In summary, despite the great 
advancement in the last years, furthermore, some limitation of Z-scores 
still exists.18,19,21 Data are limited for some measures (vena cava, atrial 
volumes) and some specific sub-groups such as pre-term, low weight 
birth, and young athletes where the adoption of formulas employed 
for the whole population may result suboptimal.18

Diastolic parameters
For blood flow Doppler and tissue Doppler parameters evaluating dia
stolic function, actual nomograms present quite reproducible inter
vals,18,27,28 except for neonates and infants, where data are limited 
and contrasting.18,27,28 Due to the scarce dependence of diastolic values 
on age and body size, however, normal values are difficult to express as 
Z-scores, and their expression as mean values plus standard deviation 
by age groups has been often preferred.18,27,28

Newer strain and 3D techniques
Paediatric nomogram on newer STE18,22,23,26 has been reported both 
for atria and ventricles. Normal paediatric values on LV and right 

ventricular (RV) volumes18,24,25 and LV mass,18,24,32,47 by 3D echo 
have also been published, while data on 3D valve size are still 
limited.18,31

Clinical Advice:

Gap in knowledge: 

• For diastolic parameters, nomograms present limitations because dia
stolic parameters are less dependent on age and body size.

• Dimensional and functional nomograms are lacking for previously pre- 
term children, low birth weight children, and young athletes.

Ventricular dimensions and function
LV size and systolic function
Quantification of LV dimensions, area, volumes, and function is a basic 
and fundamental part of the echocardiographic examination at any 
age.2,7,10,33 Despite being basic, ventricular measurements in the paedi
atric age are not completely standardized yet and are subject to a sig
nificant inter- and intra-operator variability.2,7,33 Which method 
should be employed for LV size and function quantification at different 
paediatric ages remains a matter of discussion.2,7,34–36 For years, paedi
atric guidelines7 suggested the use of the area–length method for the 
measurements of LV volumes in the paediatric age, since it’s more re
producible.7,34–36 The biplane Simpson method, however, which is the 
standard in adults,33 has been now accepted also for paediatric 
age.12,106

The used methods for LV volume quantification by 2D echocardiog
raphy rely on the geometric assumption of a fixed LV shape that, however, 
may not be applicable in all CHDs.7,34–36 Furthermore, the LV shape and 
dimensions are highly variable even at slight angulations of the probe, which 
may result in indifferent LV diameters and volumes.7,34–36 As a result, apex 
foreshortening (both in the apical and subcostal view) and incomplete visu
alization of endocardial borders are quite common errors in the 2D evalu
ation of the LV.7,34–36 Limited corrections for shape distortion are 
provided by the area–length formula, while the biplane Simpson method 
allows for a shape correction but still relies only on two planes (four- 
and two-chamber views).7,34–36 The use of 3D echocardiography, offering 
the advantage of not relying on geometric assumptions and being unaffect
ed by apex foreshortening, may provide a better reproducibility and closer 
agreement with cardiac magnetic resonance imaging (cMRI).29,37 3D tech
nology also offers more accurate semi-automated methods for cardiac 
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chamber dimension, volume, and function that help reduce the intra- and 
inter-observer variability.29,37

RV sizes and systolic function
As for adults,33 paediatric guidelines2,7 recommend measuring the RV 
area, length, diameters (end-diastolic diameters at the basal and mid- 
cavity levels), and basic functional parameters [FAC (fractional area 
change from diastole to systole) and TAPSE (tricuspid annular plane 
systolic excursion)] in an apical four-chamber view. It’s well known 
that RV evaluation by 2D echocardiography suffers from important lim
itations that are just partly overcome by 3D echocardiography.2,7,29,33

In fact, RV volumes calculated by 3D echocardiography are not always 
easy to acquire, due to the poor acoustic window and irregular shape of 
the RV (especially the RV infundibulum in cono-truncal defects that 
underwent previous surgery).2,29,33 3D echocardiography furthermore 
underestimates RV volumes compared with cMRI.7,29,33

Speckle tracking analysis
The use of STE has gained increased consensus in adults, and the use of 
global longitudinal strain is currently advised for ventricular function 
quantification in the adult population and in the adult with 
CHDs.33,97,142 STE is gaining popularity also in children with acquired 
and congenital heart disease for the evaluation of subclinical and 
regional damage (often not visible with conventional parameters) and 
to better understand complex ventricular–ventricular interac
tions.97,107 STE has been proven its value for early diagnosis of cardiac 
dysfunction and follow-up in children with cardiomyopathies (CM)98

and myocarditis.99 STE, furthermore, may be helpful for follow-up 
in children who undergone corrective (e.g. tetralogy of Fallot, 
CoA)100–102 or palliative (e.g. Fontan circulation)103,104 surgery as 
well as in the pre-operative risk assessment.105 STE is also advised 
for the LV function assessment and follow-up of children after cardio
toxic chemotherapy.106

Clinical Advice:

Gap in knowledge:
3D echocardiographic quantification of LV and RV is not advised at 

this stage in neonates and children.

Diastolic function
Echocardiographic evaluation of diastolic function in children is challen
ging. Patterns of diastolic dysfunction in children and systems for their 

classification have not been clearly defined yet.2,7,18,27,28 Adults’ stan
dards for the definition of diastolic dysfunction56,57 are often employed 
in the paediatric age, without validation. While their application56,57 in 
older children may be acceptable,7 adult definition is inapplicable in neo
nates and infants where the pattern of Doppler mitral early diastolic 
velocity (E)/late diastolic velocity (A) is highly variable, and inversion 
may be physiological.18,27,28 At high neonatal HR, furthermore, the phe
nomenon of E/A fusion is quite frequent.7,18,27,28

LV diastolic function
There are limited data comparing echocardiographic parameters to 
evaluate the diastolic function in children with invasive data and/or clin
ical outcomes.47,49–51 Data from children with CM47,49–51 are limited 
and contrasting. A large study51 of 175 children (0–18 years) with dif
ferent CM showed the inadequacy of adult guidelines for discriminating 
diastolic dysfunction. Furthermore, quite surprisingly, children with CM 
had most of the echocardiographic diastolic parameters [isovolumic re
laxation time (IVRT), mitral E/A wave Doppler velocities, and e′ tissue 
Doppler (TDI) velocities] within the paediatric ranges of normality.51

Left atrial (LA) volume47,49 and E/mitral annular TDI early diastolic vel
ocity (e′)49 were higher than in the control group47,49 in studies on chil
dren with different CM. Interestingly, LA strain peak systolic values and 
LA strain rate were both decreased49 and able to discriminate between 
CM and control groups (P < 0.001).49 Evaluation of LA strain also in
creased sensitivity in the detection of high LA pressure in pre-term 
infants.143

RV diastolic function
Literature about RV diastolic function mainly derives from studies on 
pulmonary hypertension (PH).59–63 Similarly, in children with idiopathic 
PH63 or mixed60,61 PH, tricuspid valve (TV) TDI annular e′ tissue 
Doppler velocities were lower than in controls and correlated with in
vasive RV end-diastolic and mean pulmonary arterial pressure.61,63

However, the tricuspid E/e′ ratio did not correlate with RV end- 
diastolic pressure.63 RA strain measurements are also useful indicators 
of RV diastolic function. In adults and in children with PH, all phases of 
atrial function (reservoir, conduit, and pump phase) have been shown 
to be impaired.90 In children and adolescent (2 months−18.0 years) 
with PH, indices combining data of systolic and diastolic performance 
such as TV regurgitation (TVR) to TAPSE ratio have shown to correlate 
with invasive pulmonary vascular resistance index and New York Heart 
Association class.62

Indirect signs of altered diastolic function and co-existing LV and RV diastolic 
dysfunction
Due to the lack of precise standards, evaluation of LV and RV dia
stolic dysfunction by indirect parameters may be of great va
lue.2,7,49–51 LA dilatation, rightward septal bulging, and flow 
turbulence across the PFO may indicate LV diastolic dysfunc
tion2,7,49–51 (Figure 1). For the RV, common indicators of diastolic 
dysfunction include RA dilatation, leftward septal bulging, a 
right-to-left shunt across the PFO, vena cava and hepatic vein con
gestion, and the presence of pulmonary effusion and ascites2,7,49–51

(Figure 2). Signs of increased pulmonary arterial pressure (increased 
TV velocity, interventricular septal bulging, right-to-left shunts) and 
lung congestion are common for both right and left diastolic dys
functions; therefore, a correct differential diagnosis is important 
since they may often co-exist.2,7,49–51
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Figure 1 Direct signs for the assessment of LV diastolic function and indirect signs for the assessment of LV diastolic dysfunction. (A) Biplane LA 
volumes. (B) Power Doppler transmitral flow velocity. (C ) Tissue Doppler mitral annulus velocity. (D) Subcostal view: LA dilatation, rightward septal 
bulging, and flow turbulence across the PFO. (E) Increased TR velocity. LA, left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle.

Figure 2 Indirect signs of RV diastolic dysfunction. (A) RA dilatation with leftward septal bulging and a right-to-left shunt across the PFO. (B) Subcostal 
view: vena cava and hepatic vein congestion with retrograde flow (arrow). (C ) Subcostal view: pulmonary effusion and ascites. (D) Four-chamber view: 
increased TR velocity. LA, left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle.
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Clinical Advice:

Gap in knowledge: 

• A system to define and classify diastolic dysfunction in the paediatric age 
is lacking.

• Despite being promising, the use of atrial strain parameters for the 
evaluation of the diastolic function requires further validation.

Functional parameters to estimate the 
severity of valvular lesions
Besides anatomical analysis, a quantitative and semi-quantitative evalu
ation of disease severity (e.g. the grade of stenosis and/or regurgitation) 
is also required.7,12,64 However, an accurate quantification of valve de
fect severity7,12,64 remains challenging. Quantitative analysis of AV valve 
regurgitation in children may be affected by a series of factors, including 
the difficulty to use fixed cut-off values for a broad range of ages and 
BSA, the physiological variation of HR and myocardial function with 
growth that strongly affects Doppler values, the diversity of morph
ology even within the same defect, and the impact of associated anom
alies such as intracardiac shunts.7

Semilunar valve: stenotic lesions
For stenotic lesions, only Doppler gradients showed sufficient consist
ency with invasive gradients [especially for pulmonary stenosis (PS)], 
while other quantitative parameters used in adults144 showed significant 
limitations when applied to children.65–67,80–82 Doppler gradients, how
ever, are not an exact representation of invasive gradients and require to 
be interpreted.7,65–67 Maximal Doppler gradients significantly overesti
mate, while mean Doppler gradients slightly underestimate invasive 
peak-to-peak gradients [−6.34 ± 11.9 mm Hg for aortic stenosis (AS) 
and −6.1 ± 9.4 mm Hg for PS].4,6 Overestimation of peak Doppler gra
dients may be partly attributed to the phenomenon of pressure recov
ery.65–67,80–82 Pressure recovery is more pronounced in tubular 
stenosis, as in coarctation of the aorta, while it should be less pro
nounced in AS, where it should be attenuated by the post-stenotic dila
tion of the vessel distal to the stenosis, in the ascending aorta.7,65–67,80–82

Post-stenotic dilatation, however, is less pronounced in children 
than in adults. Higher paediatric HR, furthermore, may generate 

higher flow rate, thus enhancing the phenomenon of pressure recov
ery.7,65–67,80–82 Thus, correction for pressure recovery is advised 
when maximal Doppler gradients are used.7,65–67,80–82 Maximal 
Doppler gradients corrected for pressure recovery showed limited dif
ferences in comparison with mean Doppler gradients (e.g. 1–2 mm Hg 
both for AS and PS).7,65–67,80–82 Another important aspect to be evalu
ated is whether Doppler and invasive gradients are measured in different 
haemodynamic conditions (awake patient vs. general anaesthesia) since 
they are influenced by loading conditions and HR and blood pressure 
may be different in these two settings.7,65–67 For AS, it is also important 
to consider the view where the gradient is acquired. Suprasternal view 
gradients tend to be higher than those acquired in parasternal views; 
thus, a mean of the two is advised.7,64

Heterogeneities remain in the range of Doppler measurements uti
lized to define mild, moderate, and severe AS and PS.65–67,69–73,80–82

Few studies have proposed the classification of AS severity in children 
based on Doppler gradients72,74,77,79,91 (see Supplementary data online, 
Table S16A). Similarly, there is marked heterogeneity in the classification 
of PS severity using Doppler gradients, especially in the 
mild-to-moderate forms.67 Peak Doppler values ranging from 25 to 
40 mm Hg67–71 have been used to define mild PS, while a mean gradient 
higher than 50 mm Hg is generally used to define severe PS.67–71 In add
ition, Doppler gradients are flow related; thus, in the presence of co- 
existing lesions such as VSD or MV stenosis, the gradient across the 
aorta is underestimated.7 Also, contractility may affect the gradient; 
thus, in the presence of a reduced SV, the gradient may be underesti
mated.7 In this condition, a morphological evaluation of the valve and 
the complex interplay of the different lesions is advised.7

Clinical Advice:

Gap in knowledge:
Classifications of AS and PS severity at different ages are still lacking.

Semilunar valve: regurgitant lesions
In aortic regurgitation (AR), systems to classify disease severity are lim
ited,50–53 and there is weak evidence supporting the use of quantitative 
or semi-quantitative parameters commonly employed in adults,7,144

even after correction for BSA.7,76–79,81 A few studies tried to compare 
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some of the most used echocardiographic parameters with those from 
cMRI76–79,81 (which is the gold standard) or catheter angiography82 (see 
Supplementary data online, Table S16B). In a large study with over 135 
patients with various CHDs before and after repair/palliation,77 it has 
been shown that aortic regurgitant fraction, parasternal vena contrac
ta indexed by BSA, and the ratio of thoracic and abdominal aorta ante
grade to retrograde flow and the jet cross-sectional area correlated 
with the regurgitant fraction measured by cMRI.77 The ratio of aortic 
antegrade/retrograde was used also in other smaller studies showing 
good correlations with the regurgitant fraction derived from 
cMRI.76,77 There is an agreement that assessment of LV dilatation 
by LV Z-scores is of paramount importance for estimation of AR im
pact on cardiac function and its tolerance over time.77,78 The pres
ence of pandiastolic reverse flow in abdominal aorta and in 
descending aorta are generally considered markers of severe AR. 
Increased cardiac output (to maintain an adequate flow) is another 
marker of severe AR.77,78

Various echocardiographic semi-quantitative and quantitative indices 
for pulmonary regurgitation (PR) have been evaluated in patients with 
repaired tetralogy of Fallot83–86 and compared with cMRI (which repre
sents the gold standard).85,86 In adults, flow reversal in the main or 
branch pulmonary arteries, PR jet width of 50% of the pulmonary an
nular diameter, and PR pressure half-time (PHT) <100 milliseconds 
(ms) are independent predictors of severity.84–86 A PR duration of 
80 ms and PHT of <100 ms accurately predicted angiographically se
vere PR in adults.85,86 Other markers of PR severity have been evalu
ated both in children85 and in adults.86 In children with repaired 
tetralogy of Fallot, the ratio of diastolic and systolic velocity time inte
gral of main pulmonary artery flow is an index of PR and modestly cor
related with RV myocardial performance index EF.85 Vena contracta 
has also been used to quantify PR.85,86 It has been shown that 3D 
vena contracta correlates well with 2D jet width.84 However, it’s im
portant to remember that 3D colour frame rate is often too slow to 
properly quantify regurgitation in children.84

Clinical Advice:

Gap in knowledge: 

• Echocardiographic recommendations to classify AR severity are lacking.

• Definition of severe PR is clear, while the definition of moderate and 
mild PR is less well defined.

• Larger studies to evaluate echocardiographic parameters for a more 
complete and precise assessment of semilunar valve defect in paediatric 
age are warranted (especially for AR), and a system that classifies sever
ity needs to be developed.

AV valves: stenotic lesion
For stenotic AV valve lesions,87–89 no clear categorization based on 
transvalvular echocardiography–derived ‘gradients’ has been consist
ently applied to define mild, moderate, or severe obstruction across 

different paediatric age ranges.87–89 While various anatomical classifi
cations have been proposed to classify mitral stenosis,87–89 only a few 
paediatric studies, however, proposed mitral valve (MV) stenosis clas
sifications according to gradients derived either by pulsed Doppler87

or cardiac catheterization.88 The range of gradients proposed to de
fine mild, moderate, and severe mitral stenosis, however, is variable 
between studies87,88 and differs from adult recommendations144

(see Supplementary data online, Table S16A).
Quantitative parameters such as valve area144 have also been 

poorly validated in children. All quantitative parameters, in fact, are af
fected by significant physiologic variations with growth, and thus, cut- 
off values to estimate disease severity (if applicable) should be ad
justed for age and body size.7,87–89 The high HR in children may aug
ment the transvalvular gradient and limit the accuracy or PHT and the 
effective valve area by the continuity equation.7 The impact of co- 
existing shunts [e.g. VSDs that may increase transmitral flow or 
ASDs that may reduce MV flow by permitting shunting to the right at
rium (RA)] also needs to be considered.7,87–89 Evaluation of atrial size, 
ventricular size and function, and the presence of ASD is also of im
portance for AV stenosis evaluation.7 RV pressure, the presence of 
hepatic congestion, and the characteristics of the shunt across the 
PFO are also of relevance.7

Clinical Advice:

Gap in knowledge: 

• There is a lack of validated quantitative/semi-quantitative parameters to 
classify AV valve disease severity in paediatric patients.

• Studies using both 2D and 3D echocardiographic parameters for the 
evaluation of the degree of AV regurgitation in comparison with MRI 
data are advised.

AV valves: regurgitant lesion
For AV regurgitant valve lesions, there are no clear criteria to grade dis
ease severity in the paediatric age group at present.7,90–96 Quantitative 
or semi-quantitative indices deriving from adults144 are commonly em
ployed in children, despite the fact they are not validated and often in
applicable in the paediatric age group.7,90–96 Vena contracta, one of the 
easiest and most employed indices used in adults,144 has been validated 
only in one study including 149 infants with left AV valve regurgitation 
after biventricular correction for AV septal defect.90 The lateral, an
teroposterior, and cross-sectional vena contracta area indexed for 
BSA correlated moderately with Z-scores of LV end-diastolic volumes 
and showed high inter-observer agreement.90 Other indices including 
regurgitant fraction,94 proximal isovolumetric area,94,96 and effective 
regurgitant area by 2D9,96 and 3D echocardiography95 have been 
tested only in studies with small sample sizes.95,96 As for stenosis, indir
ect assessment of AV regurgitation severity by evaluation chamber size 
and RV pressure is important.7
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Clinical Advice:

Gap in knowledge: 

• Adult quantitative parameters for AV regurgitation estimation (vena 
contracta, vena contracta indexed by BSA, regurgitant fraction proximal 
isovolumetric area, effective regurgitant area by 2D and 3D echocardi
ography) have been poorly validated in children.

• No clear criteria to grade disease severity in the paediatric age group are 
available at present.

Estimation of left-to-right shunt severity
Classification of common left-to-right shunt lesions such as septal de
fects and PDA into mild, moderate, and severe is commonly employed 
despite the lack of validated criteria.28,29,39–46 Maximal 2D defect diam
eter has been used to define small, moderate, and large atrial and septal 
defects28, 39–46 (Supplementary data online, Table S17), but cut-off va
lues vary among different authors. On the other hand, fixed cut-off va
lues may be inadequate for children, where septal defect size should 
consider body size and the relation to dimensions of other cardiac 
structures.7,28,39–46 The use of 2D measures furthermore may be in
accurate for the assessment of complex geometry of septal defects, 
where 3D measures may best fit. Criteria for image acquisition and sep
tal defect measurements by 3D echocardiography need to be standar
dized yet.29 Echocardiography provides inaccurate estimation of 
systemic to pulmonary flow ratio (Qp/Qs), overestimating the degree 
of left-to-right shunt, compared with cardiac catheterization and car
diac MRI.7,28 Thus, indirect signs of defect severity including cardiac 
chamber enlargement, left-to-right chamber dimension ratio, pulmon
ary artery pressure, and electrocardiographic alterations are of import
ance for defect severity estimation.7,28,39–44

Lastly, the definition of a restrictive PFO should be mentioned, a con
dition which may require an urgent diagnosis in cyanotic CHD in the 
neonatal age. This condition has been differently defined based on shunt 
size and flow velocity45,46 (see Supplementary data online, Table S17). 
Regardless of the definition used, assessment of direct (turbulent 
flow) and indirect signs (rightward septal bulging, pulmonary vein dila
tation) is essential for the recognition of a restrictive PFO.7,45,46

Clinical Advice:

Gap in knowledge:
Systems to define left-to-right shunt severity in relation to body size 

and to cardiac chamber overload are lacking.

Prediction scores
Risk scores for biventricular repair in complex CHDs
In Supplementary data online, Table S18, major risk scores109–115 in 
CHDs with borderline LV function of different aetiology including crit
ical AS,109–115 critical LV outflow tract (LVOT),109,122 and obstruction 

at multiple levels109,122 have been reported (Figure 3). Furthermore, we 
reported parameters for risk estimation of biventricular repair (BVR) in 
the borderline LV in unbalanced AV septal defect with left dominance 
(see Supplementary data online, Table S4). These include AV valve in
dex, LV inflow index, RV or LV inflow angle, left AV valve reduction in
dex, and VSD size115–122 (Figure 4). Similarly, parameters used to 
indicate123–128 the risk for BVR or pulmonary flow augmentation in 
complex CHDs with borderline RV such as pulmonary atresia with in
tact ventricular septum and critical PS (see Supplementary data online, 
Table S11) are shown. These include TV Z-score, RV/LV anteroposter
ior and lateral diameter ratios, RV and RA area, and direction of PFO 
shunt, as well as tricuspid regurgitation characteristics123–128 (Figure 5).

The use of risk scores for BVR in complex CHDs may be helpful; 
however, it’s important to remark how they all present significant 
underlying limitations109,122 that may limit their clinical significance. 
These include the retrospective design during score development 
(for all the studies), heterogeneity in echocardiographic parameters 
evaluated, variability in the definition of outcomes, differences in 
adopted surgical and interventional strategies, institutional differences, 
and limited follow-up (e.g. from 1 month to 5 years).109,122 Most of the 
scores furthermore were developed in the past two decades and may 
have limited clinical significance nowadays.109,122 As a result, their ap
plicability remains questionable.109,122

The use of 3D echocardiography may allow a better estimation of LV 
volumes that are constantly underestimated by 2D echocardiography 
compared with cMRI.29,37 The use of 3D echocardiography, further
more, may also help in a more precise assessment of MV annular di
mension, which is often underestimated by 2D measures.7 Thus, the 
use of 3D echocardiography may allow BVR in a greater percentage 
of children as some children are unfairly precluded due to underestima
tion of LV size by 2D measures.112

Clinical Advice:

Gap in knowledge:
Large and prospective multicentre studies with clear definition of 

echocardiographic parameters, use of 3D echocardiography, and clear 
definition of outcomes are required for the development of accurate 
risk prediction models for BVR.

Risk score for prediction of postnatal CoA in the case of a 
big arterial duct
De novo diagnosis and/or confirmation of prenatal suspicion of CoA in 
the presence of a PDA in the first days of life is often challenging. 
Besides prenatal scores, a series of scores for the prediction of post
natal CoA in the presence of a PDA have been proposed.129–134

These include (i) the carotid–subclavian artery index (CSAi), (ii) the 
isthmus/descending aorta diameters (I/D ratio), and (iii) the coarctation 
probability model (CMP) (see Supplementary data online, Table S4B). 
These scores have been tested in small and relatively small studies en
rolling 23–80 neonates. Accuracy of the scores seems to be promising 
with area under the ROC curve (AUC) varying from 0.96 for CMP to 
0.91 for CSAi and up to 0.69 for I/D ratio. Sensibility (87–100% for 
CSAi, 32.5–91.7% for I/D ratio, 92.7% for CMP) and specificity (69– 
96% for CSAi, 100–23% for I/D ratio, 94.6% for CMP) were also 
good.129–134
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Figure 3 Echocardiographic measures required for risk prediction of borderline LV by the Congenital Heart Surgeons’ Society calculator. 
(A) Parasternal long-axis view: an aortic valve annulus, aortic root, sino-tubular junction, and ascending aorta. (B) Long-axis view: LVOT. 
(C ) Long-axis view: MV annulus. (D) Apical four-chamber view: heart long axis (line, from the crux to the apical endocardium) and LV long axis 
(from the MV plane to the apex). (E) Suprasternal view: mid-aortic arch. Ao arch, aortic arch; Desc Ao, descending aorta; LA, left atrium; LV, left ven
tricle; LVOT, left ventricular outflow tract; MV, mitral valve; RA, right atrium; RV, right ventricle, STJ, sino-tubular junction.

Figure 4 Parameters for the risk prediction of unbalanced AVSD. (A) Apical four-chamber view: LAVV and RAVV virtual diameter. (B) Apical four- 
chamber view: the RV/LV inflow angle. (C ) Apical four-chamber view: the true LAVV annulus evaluated by colour flow (e.g. the LV inflow index). 
(D) Subcostal views: right-to-left AVV valve area ratio of an unbalanced AVSD. (E) Subcostal view: right-to-left AVV valve area ratio of a balanced 
AVSD, respectively. LA, left atrium; LAVV, left AV valve; LV, left ventricle; RA, right atrium; RAVV, right AV valve; RV, right ventricle.
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One of the difficult aspects in the postnatal diagnosis of CoA is to 
differentiate among the physiological postnatal RV prevalence and a 
pathological RV to LV disproportion.129–134 A LV–RV end-diastolic 
area ratio in a four-chamber view ≥1.3 has been suggested to represent 
an accurate marker (AUC 0.97) for the need of intervention in an ante
natal suspicion of CoA.129–134 Recent studies outlined the importance 
of the RV and LV function estimated by STE, as new indicators for the 
risk of development of CoA.133,134

Clinical Advice:

Gap in knowledge:
Clear criteria for diagnosis of postnatal CoA in the case of a big ar

terial duct are still lacking.

Conclusion and limitations
The present consensus paper represents a tool that intends to help the 
clinician in the reporting of normal screening examination and major 
congenital cardiac defects. Indications for interpretation of echocardio
graphic measures at different ages and body sizes according to current 
Z-scores are shown, with a special attention to functional data. 
Limitations in the evaluation of diastolic function, severity of valvular de
fects, and shunt lesions in the paediatric age group are highlighted. The 
examples providing standardized reporting formats intend to improve 
quality, promote standardization, save time, and assist in teaching and 
research purposes. These formats may be modified and implemented 
according to institutional requirements and the availability of new echo
cardiographic techniques and parameters.

Supplementary data
Supplementary data are available at European Heart Journal - 
Cardiovascular Imaging online.
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